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ABSTRACT

We define the ROC manifold and CC manifold as duals in a given sense. Their analysis is required to
describe the classification system. We propose a mathematical definition based on vector space
methods to describe both. The ROC manifolds for n-class classification systems fully describe each
system in terms of its misclassifications and, by conjunction, its correct classifications. Optimal points
which minimize misclassifications can be identified even when costs and prior probabilities differ.
These manifolds can be used to determine the usefulness of a classification system based on a given
performance criterion. Many performance functionals (such as summary statistics) preferred for CC
manifolds can also be evaluated using the ROC manifold (under certain constraints). Examples using the
ROC manifold and performance functionals to compete classification systems are demonstrated with
simulated and applied disease detection data.
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1. Introduction

Paramount to the development of classification systems is the
ability to judge the usefulness of the system, whether judging the
system against a benchmark level of acceptable performance or
comparing it to other candidate systems. To make this judgement
a performance criterion is required. One of the oldest and most
commonly used performance tools used in the analysis of
classification systems is the receiver operator characteristic
(ROC) curve. The most commonly used ROC curve depicts the
trade-off in correct classification for one pivotal class with
the false classification into that class. A less common ROC curve
depicts the trade-off of the two types of false classifications that
can occur.

In the last decade, complexity in classification applications has
warranted an extension of ROC curves and their analyses to
describe and analyze systems in which there are three or more
classes [1-11,14]. These extensions of ROC curves have produced
various surfaces defined in terms of the correct classifications
with the notable exception of [8,9,14], in which surfaces related to
the misclassification errors are described. Points lying on these
surfaces correspond to different operating parameters associated
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with the classification system. Often these parameters are
thresholds (one example would be signal-to-noise ratio), though
they need not be. There is no standardization of these surfaces
and most focus on permutations of the correct classifications. For
classification systems with three classes, these surfaces may be
visualized in a three-dimensional plot of the true (correct)
classification rates [1-7]. Since these surfaces are topological
manifolds, we refer to them as correct classification manifolds (CC
manifolds). For n > 2 classes, concepts related to these surfaces
have been proposed, many still focusing on the correct classifica-
tion rates, though the increased dimensionality makes it
impossible to view all correct classifications simultaneously
[10]. At best for the n-class system, sets of three-dimensional
plots can be used to examine the correct classifications for three
classes at a time.

Initially, focusing on correct classification rates seems appeal-
ing since, for the three-class classification system, the trade-off
between correct classifications can be compared graphically using
each class’s correct classification as an axis. Furthermore,
summary measures of these CC manifolds focus on how well
the classification systems correctly classify into their class states,
thereby describing the overall correct classification rate. By
conjunction, then, the overall misclassification rate for the entire
system is described, although no information is directly obtain-
able about misclassifications within each class. Such summary
measures include the total correct classification rate and volume
under the surface (VUS) [1,6,9]. Many researchers have examined
VUS for systems with more than two classes [12,3,10,13,6,14,4]
with the view of constructing a polytope from the data to
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calculate or describe how to use the VUS. The appeal of VUS is that
this summary performance quantifier hopefully becomes a
probability estimate as it does with the two-class case, general-
izing the diagnostic ability of the classification system across all
operating parameters. For a CC manifold, this can be interpreted
as the chance of correct classification when presented with, as a
group, one randomly selected subject from each class [1,6]. To
illustrate further using medical diagnostics, the resulting VUS for
three classes may be interpreted as the probability that a clinician
diagnoses each individual to the correct diagnostic class after
being presented with three individuals from three different
classes. Herein lies more confusion, however, because in the
VUS defined by the volume under a polytope created in the space
based on classification errors, the probability of correct classifica-
tion is not necessarily 1-VUS, if VUS indeed exists. In contrast, for
the VUS defined by the volume under a polytope created in the
space based on correct classifications, the probability of correct
classification is the VUS.

There are noted issues surrounding the use of VUS [15,9]. In
[15] we see that conclusions made when comparing classification
systems based on VUS infer the classification system’s diagnostic
ability, with the caveat that these calculations assume equal
weighting for prior probabilities and costs between the classes.
However, there are no costs associated with correct classifica-
tions, only errors in classifications, and as such, summary
statistics not considering misclassifications cannot address these
costs. In [8,9] we see a definition of a ROC hypersurface and the
hypervolume under it which extended previous efforts beyond
the three-class case to an n-class case. It is demonstrated that the
“guessing” (and through convergence the *“near-guessing”) ob-
server has the same VUS as the “perfect” ideal observer.

As a result of these works, there are two important issues to
address. First, there is a dual problem in the CC manifold. Given an
n-class classification system, analysis of the dual problem
involves an (n—1)-dimensional linear variety of the n-space
containing the CC manifold. Since this linear variety is codimen-
sion 1 to the correct classification space (CC space), a surface can
always be generated under it (ignoring the second issue discussed
below). Therefore, [9] would have the ROC hypersurface VUS of
every “perfect” ideal and “guessing” observer equal to O.
However, the CC manifold VUS of the “perfect” ideal observer is
1 in every case. This occurs because the surface created by the
“guessing” observer will always be an n-simplex for this observer.
For example, in the simpler two-class system which produces a
ROC curve, we have n=2. Hence, the ROC space is in a space of
dimension 2(2—1)=2 while the ROC curve is isomorphic to a
subset of the space R, a space of dimension 2 —1=1, making the
curve codimension 1 to the original ROC space. This creates a
“volume” under the ROC curve. Notice also that the CC curve for
the two-class system is also isomorphic to R', which is
codimension 1 to CC space. Thus, it too has a “volume”. Of
course, in these dimensions the “volume” is really area under
the curve. This phenomenon is unique to the two-class case.
Extending to a three-class case, the ROC space is a hypercube
subset of B33 = RS, while the CC space is a hypercube inside R>.
The “guessing” observer is a classifier which is a subset of
R>' =R? in ROC space. This clearly has no volume since the
linear variety has codimension 4 to the ROC space; however, the
guessing observer yields a 3-simplex in CC space, which has a
volume of J, =1 These examples can be extend to any n-class
system to demonstrate the existence of codimensions > 1 which
will suffer with similar problems. Further, these examples assume
much in the dimensionality and independence of the underlying
parameter spaces. Under ideal circumstances where there exist
five independent parameters of the classification system, which
vary as five of the six conditional probabilities of misclassification,

the ROC manifold will be isomorphic to a linear variety in
R¥-3-1_ R>, which is codimension 1 to ROC space. The second
issue to address involves the importance of the parameters a
classification system uses. In a three-class example, suppose we
have less than five parameters (an occurrence that is acknowl-
edged in[8,9]). Then the codimensionality of the space associated
with the ROC manifold will be higher than 1, and no surface can
exist. This is a very real possibility! In fact, the dimensionality of
the problem has more to do with the underlying parameters of
the classification system than with the number of classes, or
independent misclassifications.

In this paper, we define the ROC manifold and CC manifold as
duals in a given sense. Their analysis is required to describe the
classification system. We propose a mathematical definition
based on vector space methods to describe both. Unlike previous
works, this definition makes no assumption that underlying
distributions are known and thus can be utilized when likelihood
decision criterion is unavailable. The ROC manifold for n-class
classification systems fully describes the system in terms of its
misclassifications and, by conjunction, its correct classifications.
These manifolds can be used to determine the usefulness of a
classification system based on a given performance criterion. We
offer the ROC manifold not as a means for finding the optimal
classifier through the use of utility or other criteria, but as a
means to describe the performance of specific classification
systems and to eventually compare performance between
systems. Some performance functionals (such as summary
statistics) useful for CC manifolds can also be evaluated using
the ROC manifold (under certain constraints). Further, the ROC
manifold may be computed regardless of the codimension that
results from the possible classification systems, that is, directly,
without the need to reduce parameters or dimensionality to
create a manifold that is codimension 1 to the ROC space.
Therefore, the definition of the ROC manifold may subsume
previous ROC surface definitions in many cases. Another key
difference of the ROC manifold with respect to CC surfaces is that
optimal operating parameters may be identified when prior
probabilities or costs differ among the various classes. In this
paper, we will use the term, parameter, to refer to those
continuous deterministic quantities that represent different
settings for the classification system. These parameters are varied
to compare system performance constituting the various points of
the ROC manifold. The ROC manifold and CC manifold are
paramount to fully evaluating the performances of the classifica-
tion systems, and herein we endeavor to define them mathema-
tically and describe them in detail.

This paper is constructed as follows. Section 2 outlines the
necessary classification system theory. Section 3 defines the ROC
manifold and the CC manifold. In this section we observe the
relationship between the ROC manifold and the typical ROC curve
when only two classes are of interest and between previous
surfaces focusing only on correct classifications. We assume
underlying distributions are not known and, therefore, likelihood
decision criterion is unavailable. We also assume ROCs are
invariant with respect to the prevalences of the various classes
to be distinguished among, so that the class-conditional prob-
abilities do not change if, or when, prior probabilities change.
Section 4 details performance functionals useful for competing
two or more classification systems and, specifically, focuses on
Bayes cost as a decision criterion. In Section 5, we demonstrate
the ROC manifold as useful in finding points of optimal
performance defined in terms of the associated misclassification
costs and prior probabilities. Using a simple classification system,
Section 5 also gives examples that demonstrate the calculation of
the ROC manifold and associated optimal points for codimension
1 and higher systems as well as illustrate some properties of this
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