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a b s t r a c t

We build a general and easily applicable clustering theory, which we call cross-entropy clustering
(shortly CEC), which joins the advantages of classical k-means (easy implementation and speed) with
those of EM (affine invariance and ability to adapt to clusters of desired shapes). Moreover, contrary to
k-means and EM, CEC finds the optimal number of clusters by automatically removing groups which have
negative information cost.

Although CEC, like EM, can be built on an arbitrary family of densities, in the most important case of
Gaussian CEC the division into clusters is affine invariant.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering plays a basic role in many parts of data engineering,
pattern recognition and image analysis [1–5]. Thus it is not
surprising that there are many methods of data clustering, which
however often inherit the deficiencies of the first method called
k-means [6,7]. Since k-means has the tendency to divide the data
into spherical shaped clusters of similar sizes, it is not affine
invariant and does not deal well with clusters of various sizes. This
causes the so-called mouse-effect, see Fig. 1(b). Moreover, it does
not find the right number of clusters, see Fig. 1(c), and conse-
quently to apply it we usually need to use additional tools like gap
statistics [8,9]. Since k-means has so many disadvantages, one can
ask why it is so popular. One of the possible answers lies in the fact
that k-means is simple to implement and very fast compared to
more advanced clustering methods3 like EM [12,13].

In our paper we construct a general cross-entropy clustering
(CEC) theory which simultaneously joins the clustering advantages
of classical k-means and EM. The motivation of CEC comes from

the observation that it is often profitable to use various compres-
sion algorithms specialized in different data types. We apply this
observation in reverse, namely we group/cluster those data together
which are compressed by one algorithm from the preselected set of
compressing algorithms. In development of this idea we were
influenced by the classical Shannon Entropy Theory [14–17] and
Minimum Description Length Principle [18,19]. In particular we
were strongly inspired by the application of MDLP to image
segmentation given in [20,21]. A close approach from the Bayesian
perspective can also be found in [22,23].

The above approach allows us automatic reduction of unneces-
sary clusters: contrary to the case of classical k-means or EM, there
is a cost of using each cluster. To visualize our theory let us look at
the results of Gaussian CEC given in Fig. 2(c), where we started with
k¼10 initial randomly chosen clusters which were reduced auto-
matically by the algorithm. The step-by-step view at this process
can be seen in Fig. 3, in which we illustrate the subsequent steps of
the Spherical CEC on random data lying uniformly inside the circle,
and divided initially at two almost equal parts.

The clustering limitations of CEC are similar to those of EM,
namely we divide the data into clusters of shapes which are
reminiscent of the level sets of the family of the densities used. In
particular, contrary to the density clustering [24] with the use of
Gaussian CEC we will not build clusters of complicated shapes.
Moreover, in an analogy to k-means, CEC strongly depends on the
initial choice of clusters. This is the reason why in the paper we
always started CEC at least twenty times from randomly chosen
initial conditions to avoid arriving at the local minimum of the cost
function. Let us mention that there are clustering methods, see
[25], which allow us to better minimize the global minimum,
however at the cost of the fixed number of clusters. The advantage
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comparing to most classical clustering methods [26] lies in the fact
that we need only the maximal number of clusters, while we keep
the same complexity as k-means.

There are a few probabilistic methods which try to estimate the
correct number of clusters. For example in [27] the authors use the
generalized distance between Gaussian mixture models with
different components number by using the Kullback–Leibler
divergence [14,16]. A similar approach is presented in [28] (Com-
petitive Expectation Maximization) which uses a Minimum Mes-
sage Length criterion [29]. In practice one can also directly use the
MDLP in clustering [30]. The basic ideological difference lies in the
fact that in MDLP we want to take into account the total memory
cost of building the model, while in our case, like in EM, we use
the classical entropy approach, and therefore assume that the
memory cost of remembering the Gaussian (or in general density)
parameters is zero.

Another modern clustering method worth mentioning is
clearly support vector clustering [31]. In its basic form SVM allows
separating the data with the use of hyperplanes while CEC
(similarly as EM) allows the quadratic discriminant functions
[32]. However, in its general form with the use of kernel functions
support vector clustering will allow us to cluster the date into

more complicated sets than CEC, usually at a cost larger numerical
complexity. Consequently the CEC framework presented in the
paper cannot cluster sufficiently well datasets presented in [32],
since they are not well divided into Gaussian-shaped clusters.

For the convenience of the reader we now briefly summarize the
contents of the paper. The next section is devoted to the gentle
introduction to the basic properties of CEC. In particular we show
that if the data comes from the known number of Gaussian densities,
the basic results of CEC and EM clustering are similar. At the end of
this section we discuss applications of CEC on real data-sets. In the
following section we introduce notation and recall the necessary
information concerning relative entropy. In the fourth section we
provide a detailed motivation and explanation of our main idea
which allows us to reinterpret the cross-entropy for the case of many
“coding densities”. We also show how to apply classical Lloyds and
Hartigan approaches to cross-entropy minimizations.

The last section contains applications of our theory to cluster-
ing with respect to various Gaussian subfamilies. We put a special
attention on the question whether the given group of data should
be divided into two separate clusters.

First we investigate the most important case of Gaussian CEC
and show that it reduces to the search for the partition ðUiÞki ¼ 1 of
the given data-set U which minimizes the objective cost function:
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where p(V) denotes the probability of choosing set V and ΣV

denotes the covariance matrix of the set V.
Thenwe study clustering based on the Spherical Gaussians, that is

those with covariance proportional to identity. Comparing Spherical
CEC to classical k-means we obtain that clustering is scale and
translation invariant and clusters do not tend to be of fixed size.
Consequently we do not obtain the mouse effect, see Fig. 1(d).
To apply Spherical clustering we need the same information as in
the classical k-means: in the case of k-means we seek the splitting of
the data U �RN into k sets ðUiÞki ¼ 1 such that the value of∑k

i ¼ 1pðUiÞ �
DUi

is minimal, where DV ¼ ð1=cardðVÞÞ∑vAV Jv�mV J2 denotes
the mean within cluster V sum of squares (and mV is the mean
of V). It occurs that the Gaussian spherical clustering in RN reduces

Fig. 1. Clustering of the uniform density on mouse-like set (a) by standard k-means algorithm with k¼3 (b) and k¼10 (c) compared with Spherical CEC (d) with initially 10
clusters (finished with 3). (a) Mouse-like set. (b) k-means with k¼3. (c) k-means with k¼10. (d) Spherical CEC.

Fig. 2. Comparison of clustering of mixture of 4 Gaussians by EM (with 4 Gaussian densities) and Gaussian CEC starting from 10 initial clusters. (a) Data coming frommixture
of 4 Gaussians. (b) EM clustering with 4 Gaussians. (c) CEC clustering with initially 10 Gaussians.

Fig. 3. Reduction of cluster by the spherical CEC.
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