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a b s t r a c t

This paper presents variable-wise kernel hard clustering algorithms in the feature space in which
dissimilarity measures are obtained as sums of squared distances between patterns and centroids
computed individually for each variable by means of kernels. The methods proposed in this paper are
supported by the fact that a kernel function can be written as a sum of kernel functions evaluated on
each variable separately. The main advantage of this approach is that it allows the use of adaptive
distances, which are suitable to learn the weights of the variables on each cluster, providing a better
performance. Moreover, various partition and cluster interpretation tools are introduced. Experiments
with synthetic and benchmark datasets show the usefulness of the proposed algorithms and the merit of
the partition and cluster interpretation tools.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is one of the most useful tools to explore data
structures and has been widely applied in various areas, including
taxonomy, image processing, data mining, and information retrieval.
Clustering means the task of organizing a set of patterns into clusters
such that patterns within a given cluster have a high degree of
similarity, whereas patterns belonging to different clusters have a
high degree of dissimilarity [17,25].

An important component of a clustering algorithm is the
dissimilarity (or similarity) measure. Distance measures are
important examples of dissimilarity measures and the Euclidean
distance is most commonly used in conventional partitioning
(hard and fuzzy) clustering algorithms, which perform well with
datasets in which natural clusters are nearly hyper-spherical and
linearly separable. However, when the data structure is complex
(i.e., clusters with non-hyperspherical shapes and/or linearly non-
separable patterns), these algorithms may have poor performance.
Because of this limitation, several methods that are able to handle
complex data have been proposed, among them, the kernel-based
clustering methods.

With the development of the kernel K-means algorithm [16],
several clustering methods such as fuzzy c-means [3], self-orga-
nizing maps (SOM) [29,30], the mountain method [46] and neural

gas [33] have been modified to incorporate kernels and a variety of
kernel methods for clustering have been proposed [14]. Two main
approaches have guided such modifications: kernelization of the
metric, where the centroids are obtained in the original space and
the distances between patterns and centroids are computed by
means of kernels, and clustering in the feature space, in which
centroids are obtained in the feature space. Important hard
clustering algorithms based on kernels were developed in Refs.
[5,13,20]. Kernel-based fuzzy clustering methods have been pro-
posed in Refs. [10,44,49]. The authors of Refs. [23,32] developed a
kernelized version of SOM. In [28] a kernel mountain method was
presented and in [39] a kernel version of neural gas algorithm was
proposed. A semi-supervised kernel-based clustering method with
metric learning was proposed in Ref. [47]. Moreover, various
studies have demonstrated that the kernel clustering methods
outperform the conventional clustering approaches when the data
have a complex structure, because these algorithms may produce
nonlinear separating hypersurfaces among clusters [5,14,19,27].

In clustering analysis the patterns to be clustered are usually
represented as vectors where each component is a measurement
of a variable. Conventional clustering algorithms, such as K-means,
fuzzy c-means and SOM, and their kernelized counterparts con-
sider that all variables are equally important in the sense that all
have the same weight in the construction of the clusters. Never-
theless, in most areas, especially if we are dealing with high-
dimensional datasets, some variables may be irrelevant and,
among the relevant ones, some may be more or less important
than others to the clustering procedure. Moreover, the contribu-
tion of each variable to each cluster may be different, i.e., each
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cluster may have a different set of important variables. A number
of modifications of the K-means algorithm have been proposed in
the literature to automatically learn the weights of the variables
and improve the performance of the K-means algorithm [1,21,
26,31,43].

In this paper we propose variable-wise kernel hard clustering
methods in the feature space where dissimilarity measures are
obtained as sums of squared distances between patterns and
centroids computed individually for each variable by means of
kernel functions. The main advantage of the proposed approach
over the conventional kernel-based clustering methods is that it
allows us to use adaptive distances which change at each algo-
rithm iteration and can be different from one cluster to another.
This kind of dissimilarity measure is suitable to learn the weights
of the variables during the clustering process, improving the
performance of the algorithms. The derivation of the expressions
of the weights of the variables was done considering two cases:
one assumes that the sum of the weights of the variables on each
cluster must be equal to one, whereas the other assumes that the
product of the weights of the variables on each cluster must be
equal to one [12]. Another advantage of this approach is that it
allows the introduction of various partition and cluster inter-
pretation tools.

The remainder of the paper is organized as follows. In Section 2
a brief review about kernels is presented and the conventional
kernel-based hard clustering algorithm in the feature space is
described. Section 3 introduces variable-wise kernel hard cluster-
ing methods in the feature space based on adaptive distances. In
Section 4 we introduce suitable dispersion measures in which the
tools for the interpretation of the partition and the clusters are
based: indexes for evaluating the overall quality of a partition, the
homogeneity of the individual clusters, as well as the role of the
different variables in the cluster formation process. In Section 5 we
demonstrate the effectiveness of the proposed methods through
experiments with synthetic and benchmark datasets. Finally, a
summary is given to conclude the paper in Section 6.

2. Conventional kernel-based hard clustering method in the
feature space

Recently, a number of researchers have shown interest in
kernel clustering methods [14]. The main idea behind these
methods is the use of a non-linear mapping Φ from the input
space to a high dimensional (possibly infinite) space, called the
feature space.

In this section we briefly recall the basic theory about kernel
functions and the conventional kernel clustering algorithm in the
feature space. Let X ¼ fx1;…; xng be a non-empty set where xiARp.
A function K : X � X-R is called a positive definite kernel (or
Mercer kernel) if and only if K is symmetric (i.e., Kðxi; xkÞ ¼
Kðxk; xiÞ) and the inequality ∑n

i ¼ 1∑
n
k ¼ 1cickKðxi; xkÞZ0 8nZ2

holds, where crAR 8r¼ 1;…;n [34].
Let Φ : X-F be a non-linear mapping from the input space X

to a high dimensional feature space F . By applying the mapping
Φ, the dot product x>

i xk in the input space is mapped to
ΦðxiÞ>ΦðxkÞ in the feature space. The key idea in kernel algo-
rithms is that the non-linear mapping Φ does not need to be
explicitly specified because each Mercer kernel can be expressed
as Kðxi; xkÞ ¼ΦðxiÞ>ΦðxkÞ [37,41].

One of the most relevant aspects in applications is that it is
possible to compute Euclidean distances in F without explicitly
knowing Φ. This can be done using the so-called distance kernel
trick [14,19,37,41]:

‖ΦðxiÞ�ΦðxkÞ‖2 ¼ ðΦðxiÞ�ΦðxkÞÞ> ðΦðxiÞ�ΦðxkÞÞ

¼ΦðxiÞ>ΦðxiÞ�2ΦðxiÞ>ΦðxkÞþΦðxkÞ>ΦðxkÞ
¼Kðxi; xiÞ�2Kðxi; xkÞþKðxk; xkÞ:
Let K be an n� n matrix called kernel matrix where each

element κil ¼Kðxi; xlÞ, i¼1,…,n, l¼1,…,n [38]. Examples of com-
monly used kernel functions are the Gaussian, given by Kðxi;

xkÞ ¼ e�‖xi �xk‖2=2s2 , s40 [45], and the Polynomial of degree d,
given by Kðxi; xkÞ ¼ ðγx>

i xkþθÞd, γ40, θZ0, dAN.
There are two major variations of kernel clustering methods

which are based, respectively, on kernelization of the metric, in
which the clustering algorithms seek for centroids in the input
space and the distances between patterns and centroids are
obtained by means of kernels; and clustering in the feature space
that proceeds by mapping each pattern by means of a non-linear
function Φ and then obtaining the centroids in the feature space.
Let vΦk be the kth cluster centroid in the feature space. It is possible
to obtain ‖ΦðxiÞ�vΦk ‖

2 without the need for calculating vΦk by
means of the kernel trick.

2.1. Kernel K-means in the feature space

The kernel K-means algorithm in the feature space (here
labeled KCM-F) iteratively searches for K cluster centroids by
minimizing the following objective function [11,14,18,49]:

J ¼ ∑
K

k ¼ 1
∑

iAPk

‖ΦðxiÞ�vΦk ‖
2; ð1Þ

where vΦk is the kth cluster centroid in the feature space.
Optimization of the criterion given in (1) with respect to vΦk

provides the following expression for the cluster centroids in the
feature space [11,14,18,49]:

vΦk ¼ 1
jPkj

∑
iAPk

ΦðxiÞ; k¼ 1;…;K : ð2Þ

The non-linear mapping Φ is not known explicitly, so the
cluster centroid in feature space vΦk (k¼1,…,K) cannot be obtained
directly. The distance between ΦðxiÞ and vΦk in the feature space is
calculated through the kernel in the original space:

‖ΦðxiÞ�vΦk ‖
2

¼ΦðxiÞ>ΦðxiÞ�2ΦðxiÞ> ðvΦk ÞþðvΦk Þ> ðvΦk Þ

¼ΦðxiÞ>ΦðxiÞ�
2∑lAPk

ΦðxlÞ>ΦðxiÞ
jPkj

þ∑rAPk
∑sAPkΦðxrÞ>ΦðxsÞ

jPkj2

¼Kðxi; xiÞ�
2∑lAPk

Kðxl; xiÞ
jPkj

þ∑rAPk
∑sAPk

Kðxr ; xsÞ
jPkj2

: ð3Þ

Additionally, the criterion J given in Eq. (1) can be rewritten as

J ¼ ∑
K

k ¼ 1
∑

iAPk

Kðxi; xiÞ�
2∑lAPk

Kðxl; xiÞ
jPkj

�

þ∑rAPk
∑sAPk

Kðxr ; xsÞ
jPkj2

�
: ð4Þ

The KCM-F algorithm lacks the step inwhich cluster centroids are
updated. The updating of the partition can be done without
calculating the centroids due to the implicit mapping via the kernel
function in Eq. (3).

The clusters Pk (k¼1,…,K), which minimize the clustering
criterion J given in Eq. (1), are updated according to the following
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