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a b s t r a c t

In statistical modeling, parameter estimation is an essential and challengeable task. Estimation of the
parameters in the Dirichlet mixture model (DMM) is analytically intractable, due to the integral
expressions of the gamma function and its corresponding derivatives. We introduce a Bayesian
estimation strategy to estimate the posterior distribution of the parameters in DMM. By assuming the
gamma distribution as the prior to each parameter, we approximate both the prior and the posterior
distribution of the parameters with a product of several mutually independent gamma distributions.
The extended factorized approximation method is applied to introduce a single lower-bound to the
variational objective function and an analytically tractable estimation solution is derived. Moreover,
there is only one function that is maximized during iterations and, therefore, the convergence of the
proposed algorithm is theoretically guaranteed. With synthesized data, the proposed method shows the
advantages over the EM-based method and the previously proposed Bayesian estimation method. With
two important multimedia signal processing applications, the good performance of the proposed
Bayesian estimation method is demonstrated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical modeling plays an important role in various research
areas [1–3]. It provides a way to connect the data with the
statistics. An essential part in statistical modeling is to estimate
the values of the parameters in the distribution or to estimate the
distribution of the parameters, if we consider them as random
variables. The maximum likelihood (ML) estimation method gives
point estimates to the parameters and disregards the remaining
uncertainty in the estimation. Rather than taking the point
estimates, the Bayesian estimation method gives the posterior
probability distributions over all model parameters, using the
observed data together with the prior distributions [3]. In general,
compared to the ML estimation, the Bayesian estimation of the
parameters in a statistical model could yield a robust and stable
estimate, by including the resulting uncertainty into the estima-
tion, especially when the amount of the observed data is small [4].

The Gaussian distribution and the corresponding Gaussian
mixture model (GMM) are widely used to model the underlying
distribution of the data. However, not all data we would like to

model can be safely assumed to be Gaussian distributed [5].
Recently, the studies of non-Gaussian statistical models have
become popular for the purpose of modeling bounded or semi-
bounded data (see e.g., [6–9]). The non-Gaussian statistical models
include, among others, the beta distribution, the gamma distribu-
tion, and the Dirichlet distribution.

The Dirichlet distribution and the corresponding Dirichlet
mixture model (DMM) were frequently applied to model propor-
tional data, for example, in image processing [10], in text analysis
[11], and in data mining [12]. For speech processing, applications
of Dirichlet distribution in the line spectral frequency (LSF)
parameter quantization [13] were shown superior to conventional
GMM based methods. Another usage of the Dirichlet distribution
is to model the probabilities of the weighting factors in a mixture
model [14,15]. In non-parametric Bayesian modeling, the Dirichlet
process is actually an infinite-dimensional generalization of the
Dirichlet distribution so that an infinite mixture model can be
obtained [15–17]. Here, we study only the finite DMM and the
work conducted can also be extended to the infinite mixture
modeling case.

In this paper, we carry on our previous study of Bayesian
analysis of BMM [8] and extend it to the Bayesian analysis of DMM.
The parameters in a Dirichlet distribution are assumed mutually
independent and each of them is assigned by a gamma prior.
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Although this assumption violates the correlation among the
parameters, it captures the non-negative properties of those
parameters. By this assumption, we can apply the factorized
approximation (FA) method to carry out the Bayesian estimation.
However, as the expectation of the multivariate log-inverse-beta
(MLIB) function cannot be calculated explicitly, an analytically
tractable solution to the posterior distribution is not feasible. To
overcome this problem, we study some relative convex properties
of the MLIB function. Using these convexities, we approximate the
expectation of the MLIB function by a single lower-bound (SLB).
With this derived SLB and by principles of the VI framework and
the extended factorized approximation (EFA) method [8,18–24],
we approximate the posterior distributions of the parameters in a
Dirichlet distribution with a product of several mutually indepen-
dent gamma distributions, which satisfies the conjugate match
between the prior and posterior distributions. Finally, an analyti-
cally tractable solution for calculating the posterior distribution is
obtained. This analytically tractable solution avoids the numerical
calculations in the EM algorithm [25,10].

The proposed method, which is a full Bayesian framework, can
automatically determine the model complexity (in terms of the
number of necessary mixture components) based on the data. This
task is also challenging in model estimation and the ML estimation
itself cannot handle this issue. Moreover, the overfitting problem
in the ML estimation can also be prevented due to the advantages
of Occam's razor effect in Bayesian estimation. With synthesized
data evaluation, the effectiveness and the accuracy of the proposed
Bayesian estimation method over the ML estimation method
[10,25] and the recently proposed Bayesian estimation method
[12] are demonstrated. For the real life applications, we evaluate
the proposed Bayesian estimation method with two important
multimedia signal processing applications, namely (1) the LSF
parameter quantization in speech coding [13] and (2) the multi-
view depth image enhancement in free-viewpoint television (FTV)
[26]. For both applications, the proposed Bayesian method works
well and shows improvement over the conventional methods.

The remaining parts of this paper are organized as follows: the
DMM and the Bayesian analysis of a DMM are introduced in Sections
2 and 3, respectively. In Section 4, we show the efficiency and good
performance of the proposed method with the synthesized data and
the real life data. Some conclusions are drawn in Section 5.

2. Dirichlet mixture model

If a K-dimensional vector x¼ ½x1;…; xK �T contains only positive
values and the summation of all the K elements is smaller than
one, the underlying distribution of x could be modeled by a
Dirichlet distribution. The probability density function (PDF) of a
Dirichlet distribution is1

Dirðx;uÞ ¼ Γð∑Kþ1
k ¼ 1ukÞ

∏Kþ1
k ¼ 1ΓðukÞ

∏
Kþ1

k ¼ 1
xuk �1
k ; uk40; 0oxko1; ð1Þ

where xKþ1 ¼ 1�∑K
k ¼ 1xk, u¼ ½u1;…;uKþ1�T is the parameter

vector, and Γð�Þ is the gamma function defined as
ΓðzÞ ¼ R1

0 tz�1e� t dt. The shape of the Dirichlet distribution
depends on the parameters. When uk41, k¼ 1;…;Kþ1, it is
unimodally distributed. This is a typical case in practical applica-
tions. Thus in this paper, we study only the Dirichlet distribution
with all its parameters greater than one.

To model the multimodality of the data, the mixture modeling
technique [14] can be applied to create a DMM. With I mixture
components, the PDF of a DMM can be represented, given a set of
N i.i.d. observations X¼ ½x1;…; xN �, as

f ðX;Π;UÞ ¼ ∏
N

n ¼ 1
∑
I

i ¼ 1
πi Dirðxn;uiÞ; πi40; ∑

I

i ¼ 1
πi ¼ 1; ð2Þ

whereΠ¼ ½π1;…;πI �T is the mixture weights and U¼ ½u1;…;uI � is
the parameter matrix.

3. Bayesian estimation with variational inference framework

For a distribution belonged to the exponential family, the
conjugate prior and the corresponding posterior distribution
always exist [3]. Similar to the beta distribution [8], the Dirichlet
distribution has its conjugate prior and the corresponding poster-
ior distributions. However, they are not tractable in practical use.
Thus we follow the principle of VI framework [18,3] to approx-
imate the prior and posterior distributions. With the proposed
approximation, the obtained prior and posterior distributions can
be easily calculated and used.

3.1. Conjugate prior to Dirichlet distribution

Since the Dirichlet distribution is a member of the exponential
family, the conjugate prior of the Dirichlet distribution exists. If we
assume that the parameter vector u¼ ½u1;…;uKþ1�T is a vector
random variable, then the prior distribution of u can be expressed as

f ðu;β0;ν0Þ ¼
1

Cðβ0;ν0Þ
Γð∑Kþ1

k ¼ 1ukÞ
∏Kþ1

k ¼ 1ΓðukÞ

" #ν0
e�βT

0ðu�1K þ 1Þ; ð3Þ

where β0 ¼ ½β10
;…;βKþ10

�T and ν0 are the hyperparameters in the

prior distribution. Cðβ0;ν0Þ is the normalization factor. 1m denotes an
m-dimensional vector with all elements equal to one. With Bayes'
theorem and combining (1) and (3) together, we can obtain the
posterior distribution of the parameters, given the observation
X¼ ½x1;…; xN�, as

f ðujX;βN ;νNÞ ¼
DirðXjuÞf ðu;β0;ν0ÞR
DirðXjuÞf ðu;β0;ν0Þ du

¼ 1
CðβN ;νNÞ

Γð∑Kþ1
k ¼ 1ukÞ

∏Kþ1
k ¼ 1ΓðukÞ

" #νN
e�βT

N ðu�1K þ 1Þ; ð4Þ

where βN ¼ β0� ln X� 1N , νN ¼ ν0þN are the hyperparameters in
the posterior distribution. Since some statistics of u, e.g., the mean, the
covariance, cannot be obtained directly (by an analytically tractable
expression) from (3) or (4), it is not convenient to use them in
practical problems. In the following paragraphs, we will apply the VI
framework to approximate the prior and posterior distributions of the
parameters in a DMM. These approximations can lead to an analy-
tically tractable solution and would be easily used in practice.

3.2. Factorized approximation

In a DMM, the observations X¼ ½x1;…; xN� are considered as
the incomplete data and an I-dimensional indication vector
zn ¼ ½zn1;…; znI�T is assigned to each observation xn to build a
complete data set. Only one element in the indication vector is
equal to 1 and the remaining elements are zeros. Thus zni ¼ 1
indicates that the nth observation is generated from the ith
mixture component. For N observations, we have N indication
vectors denoted as Z¼ ½z1;…; zN �. If we treat all the parameters in
(2) as the random variables, the conditional PDF of the complete

1 To prevent confusion, we use f ðx; aÞ to denote the PDF of x parameterized by
parameter a. f ðxjaÞ is used to denote the conditional PDF of x given a, where both x
and a are random variables. Both f ðx; aÞ and f ðxjaÞ have exactly the same
mathematical expressions.
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