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a b s t r a c t

This paper proposes a locality correlation preserving based support vector machine (LCPSVM) by
combining the idea of margin maximization between classes and local correlation preservation of class
data. It is a Support Vector Machine (SVM) like algorithm, which explicitly considers the locality
correlation within each class in the margin and the penalty term of the optimization function. Canonical
correlation analysis (CCA) is used to reveal the hidden correlations between two datasets, and a variant
of correlation analysis model which implements locality preserving has been proposed by integrating
local information into the objective function of CCA. Inspired by the idea used in canonical correlation
analysis, we propose a locality correlation preserving within-class scatter matrix to replace the within-
class scatter matrix in minimum class variance support machine (MCVSVM). This substitution has the
property of keeping the locality correlation of data, and inherits the properties of SVM and other similar
modified class of support vector machines. LCPSVM is discussed under linearly separable, small sample
size and nonlinearly separable conditions, and experimental results on benchmark datasets demonstrate
its effectiveness.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The support vector machines (SVMs) [1] are based on the idea of
structural risk minimization to classify instances, and have been
shown to be more powerful tools than traditional machine learning
approaches. Different from other classification approaches which
simply minimize the training error, SVMs aim to maximize the class
margin for linearly separable data. When dealing with nonlinear
classification data, SVMs adopt kernel-based mapping approaches
to map the data in the original space to a high-dimensional feature
space, in which the data become linearly separable or near-linearly
separable, and obtain a maximum margin hyperplane determined
by some support vectors. As the solution of SVMs is exclusively
determined by support vectors, and all other data are irrelevant to
the decision hyperplane [2], they have sparseness and unique
solution properties. In SVMs, classification problems are reformu-
lated by convex quadratic programming (QP) problems which can
guarantee unique and global solutions.

Although the SVM algorithm works effectively for classification
problems, it ignores the inner structure of the data, and the
generalization capability of its solution is low [3,4]. Several efforts
have been made to deal with its disadvantages. Inspired by the

optimization of Fisher's discriminant ratio [5], a modified version
of SVM has been constructed by merging Fisher's discriminant and
SVMs [6]. It takes consideration of the local similarity of the elastic
graph nodes according to their discriminant power, and experi-
mental results show that it outperforms typical SVMs. In order to
overcome the initiated singular within-class scatter matrix pro-
blem when the number of training vectors is larger than the
feature dimensionality, the method is extended to a minimum
class variance support vector machines (MCVSVM) [3], and the
solution of MCVSVM can be found through principal component
analysis (PCA) dimensionality reduction [7]. When the data are
nonlinearly separable, it has also been proved that, under kernel
PCA (KPCA) [8], the classification problem can be reformulated
into an equivalent linear MCVSVM problem. Different from typical
SVMs, the optimization problem of MCVSVM considers the class
distribution while ensuring class separability, so it has the advan-
tages of Fisher's linear discriminant analysis (FLDA) [9] and SVMs.
But MCVSVM ignores the embedded manifold structure of data.

In order to overcome the drawbacks of SVM and MCVSVM, an
algorithm called minimum class locality preserving variance sup-
port machine (MCLPV_SVM) is proposed [4], which explicitly
considers the manifold structure of data in the optimization
problem. MCLPV_SVM merges the locality preserving projections
(LPP) [10–12] with SVMs, and preserves the local manifold struc-
ture of the data by a nearest-neighbor graph for each class. A
locality preserving within-class scatter matrix is defined and used
in the optimization problem of MCLPV_SVM. MCLPV_SVM inherits

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2014.04.004
0031-3203/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: Department of Computer Science, Shandong Normal
University, Jinan 250014, Shandong, China.

E-mail address: huaxzhang@hotmail.com (H. Zhang).

Pattern Recognition 47 (2014) 3168–3178

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.04.004
http://dx.doi.org/10.1016/j.patcog.2014.04.004
http://dx.doi.org/10.1016/j.patcog.2014.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.004&domain=pdf
mailto:huaxzhang@hotmail.com
http://dx.doi.org/10.1016/j.patcog.2014.04.004


advantages of both SVM and MCVSVM. Another similar work called
the Laplacian support vector machine (LSVM) [13] also combines
LPP and SVM, but it aims at semi-supervised learning problems.

Slack variables are introduced to allow some of the training
data to be misclassified, and form a penalty term in the optimiza-
tion function of typical linearly separable SVMs. A parameter is
used to control the trade-off between the slack variable penalty
and the margin. Researches show that considering the class
distribution in the penalty term of SVM improves its classification
performance [14–16]. Each training sample is assigned a fuzzy
membership which represents its contribution to the learning of
decision surface, and SVM is reformulated into fuzzy SVM (FSVM)
[14]. An extension of FSVM is proposed in [15], in which two
membership values are assigned to each training sample. Based on
the density distribution information of the training data, a density-
induced margin SVM (DMSVM) is presented [16]. A relative
density degree is assigned to each data point as the relative
margin, and is presented in the constraints of the optimization
function to reflect the density distribution of data in SVMs.

Inspired by the idea of taking into account the local manifold
structure of data in the margin of the optimization function of
SVMs [4] or the class distribution in the penalty term [14,15], we
propose a novel learning algorithm named as Locality Correlation
Preserving SVM (LCPSVM) in which the locality correlation within
each class is explicitly considered in the margin and the penalty
term. Many locality-preserving approaches have been proposed to
implement dimensionality reduction while keeping unchanged
the manifold structure of the training data, they also have been
used commonly to deal with nonlinear classification problems.
These approaches include locally linear embedding (LLE) [17],
Locality preserving projection (LPP) [10], and Isomap [18]. They
take into account the local neighborhood structure of data to
discover the low dimensional manifold structure embedded in the
original high dimensional space. Canonical Correlation Analysis
(CCA) [19] is used to reveal the hidden correlations between two
datasets, and by integrating local information into the objective
function of CCA, a Correlation Analysis model which implements
Locality preserving (LCA) [20] is proposed. In LCA, global means of
data are replaced by local means when revealing hidden correla-
tions between two datasets. Inspired by the idea used in LCA, we
replace the class mean sample vectors with particular local mean
sample vectors in the within-class scatter matrix, and propose a
locality correlation preserving within-class scatter matrix. This
substitution has the property of keeping the locality correlation.

The rest of the paper is organized as follows. Section 2 briefly
reviews the SVM learning theory and discusses the related works,
and Section 3 presents the linear case of Locality Correlation
Preserving SVM (LCPSVM). The relationship of LCPSVM with the
related existing approaches is discussed in Section 4. Section 5
presents the small sample size case when the number of the
training samples is less than the feature dimensionality of sam-
ples, and the problems under nonlinear conditions are solved in
Section 6. Section 7 reports the experimental results, and Section 8
concludes the paper.

2. Related works

We will briefly introduce SVM, MCVSVM, and MCLPV_SVM in
this section. Only two class classification problems are discussed in
this paper, and multiclass classification problems can be solved by
constructing multiple separate SVMs. Given a training dataset
fðxi; tiÞgni ¼ 1 of n samples with input data xiARm and correspond-
ing binary class labels tiAfþ1; �1g, samples with class label þ1
belong to Xþ , and all the others belong to X� . For the soft margin
SVM, the primal optimization problem used to construct a linear

decision surface can be expressed as follows:

min
w;b;ξ

1
2
‖w‖2þC∑

i
ξi;

s:t: tiðwTxiþbÞZ1�ξi; ξiZ0; i¼ 1;2;…;n ð1Þ
where w is a weight vector and wARm, ξ¼ ðξ1;ξ2;…; ξnÞ is the
vector of the slack variables, and C is a parameter that controls the
trade-off between the slack variable penalty and the margin.
Nonlinear decision surfaces can also be constructed by applying
a nonlinear function φ to map the samples in the original space to
a very high dimensional feature space (xi is replaced withφðxiÞ in (1)).
In the feature space, samples are linearly or near-linearly separable,
and a maximum margin hyperplane can be found. The classifier takes
the form sgnðwTxþbÞ for a linear decision surface or sgnðwTφðxÞþbÞ
for a nonlinear decision surface.

2.1. Minimum class variance support vector machine (MCVSVM)

MCVSVM [3] is a modified class of SVM. It takes into account
the class distribution of the training data when constructing a
separable surface, that means the constructed surface is not only
exclusively determined by the support vectors (SVs), but also is
influenced by all other non-SVs, thus its solution is more robust
than that of typical SVMs. MCVSVM uses the following optimum
function with soft margin to learn a linear decision surface:

min
w;b;ξ

wTSwwþC∑
i
ξi;

s:t: tiðwTxiþbÞZ1�ξi; ξiZ0; i¼ 1;2;…;n ð2Þ
where the within-class scatter matrix Sw is defined by

Sw ¼ ∑
xi AX þ

ðxi�uþ ÞT ðxi�uþ Þþ ∑
xi AX �

ðxi�u� ÞT ðxi�u� Þ ð3Þ

in (3), uþ and u� are the mean sample vectors for class Xþ and
X� respectively.

When Sw is nonsingular, in order to solve the optimization problem
(2), a transformation of the problem to its Wolfe dual problem using a
Lagrangian formulation is made. But when the number of training
data is smaller than the dimensionality of the training data, Sw may be
singular, the solution of (2) in such case can be obtained through PCA
dimensionality reduction. The optimization problem of the nonlinear
MCVSVM decision surfaces can be found similarly.

2.2. Minimum class locality preserving variance support vector
machine (MCLPV_SVM)

MCLPV_SVM [4] takes into consideration the intrinsic manifold
structure of data in each class. LPP [10] and Isomap [18] have been
widely used in face recognition [11,12] to preserve the intrinsic
geometry of data and local structure, and MCLPV_SVM merges LPP
with SVM and inherits the characteristics of SVM and MCVSVM.
For each vector xi in the training set, neðxiÞ denotes its k nearest
neighbors with the same class label, a weight matrix V is
calculated with its ith row entries associated with xi being defined
by the Gaussian kernel as follows:

vij ¼
e�‖xi �xj‖2=s if xjAneðxiÞ or xiAneðxjÞ
0 otherwise

(
ð4Þ

where ‖x‖2 ¼∑m
i ¼ 1x

2
i denotes the Euclidean norm in Rm, and s is

the heat kernel parameter greater than 0. Let D be a M�M
diagonal matrix with its diagonal entries dij ¼∑M

j ¼ 1vij (M denotes

the number of samples), given the Laplacian matrix L¼D�V, the
locality preserving scatter matrix for the positive class data and
the negative class data is defined by Zþ ¼Xþ Lþ ðXþ ÞT and
Z� ¼X�L� ðX� ÞT separately, where Lþ is the Laplacian matrix
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