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a b s t r a c t

Deep belief networks (DBNs) are currently the dominant technique for modeling the architectural depth
of brain, and can be trained efficiently in a greedy layer-wise unsupervised learning manner. However,
DBNs without a narrow hidden bottleneck typically produce redundant, continuous-valued codes and
unstructured weight patterns. Taking inspiration from rate distortion (RD) theory, which encodes
original data using as few bits as possible, we introduce in this paper a variant of DBN, referred to as
sparse-response DBN (SR-DBN). In this approach, Kullback–Leibler divergence between the distribution
of data and the equilibrium distribution defined by the building block of DBN is considered as a
distortion function, and the sparse response regularization induced by L1-norm of codes is used to
achieve a small code rate. Several experiments by extracting features from different scale image datasets
show that our approach SR-DBN learns codes with small rate, extracts features at multiple levels of
abstraction mimicking computations in the cortical hierarchy, and obtains more discriminative represen-
tation than PCA and several basic algorithms of DBNs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent neuroscience findings [1–6] have provided insight into
the principles governing information representation in the mam-
mal brain, leading to new ideas for designing systems to effectively
represent information. One of the key findings is that the mammal
brain is organized in a deep architecture. Given an input percept,
it is represented with multiple levels of abstraction, each level
corresponding to a different area of cortex. By using these abstract
features learned through the deep architecture, human achieves
perfect performance on many real-world tasks such as object
recognition, detection, prediction, and visualization. In current
machine learning community, how to imitate this hierarchical
architecture of mammal brain to obtain good representation of
data in order to improve the performance of a learning algorithm
has become an essential issue.

Recently, deep learning has become the dominant technique to
learn good information representation that exhibits similar char-
acteristics to that of the mammal brain. It has gained significant
interest for building hierarchical representations from unlabeled
data. A deep architecture consists of feature detector units arranged
in multiple layers: lower layers detect simple features and feed into
higher layers, which in turn detect more complex features. In
particular, deep belief network (DBN), the most popular approach

of deep learning, is a multilayer generative model in which each
layer encodes statistical dependencies among the units in the layer
below, and it can be trained to maximize (approximately) the
likelihood of its training data. So far, there have been a great deal
of DBN models being proposed. For example, Hinton et al. [7]
proposed an algorithm based on learning individual layers of a
hierarchical probabilistic graphical model from the bottom up.
Bengio et al. [8] proposed a similar greedy algorithm on the basis
of auto-encoders. Ranzato et al. [9] developed an energy-based
hierarchical algorithm, using a sequence of sparsified auto-enco-
ders/decoders. Particularly, the model proposed by Hinton et al. is a
breakthrough for training deep networks. It can be viewed as a
composition of simple learning modules, each of which is a
restricted Boltzmann machine (RBM) that contains a layer of visible
units representing observable data and a layer of hidden units
learned to represent features that capture higher-order correlations
in the data [10]. Nowadays, DBNs have been successfully applied to
a variety of real-world applications, including hand-written char-
acter recognition [7,11], text representation [12], audio event
classification, object recognition [13], human motion capture data
[14,15], information retrieval [16], machine transliteration [17],
speech recognition [18–20] and various visual data analysis tasks
[21–23].

Although DBNs have demonstrated promising results in learn-
ing good codes or representations, DBNs without constraints on the
hidden layers may produce redundant, continuous-valued codes
and unstructured weight patterns. Some scholars attempted to
further improve DBNs' performance according to add constraints
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on the representations [24–30]. Among them, introducing the
notion of sparsity makes DBN present state-of-the-art results
because sparse representation is able to obtain succinct codes
and structured weight patterns. Given images, sparse DBN is able
to discover low-level structures such as edges, as well as high-level
structures such as corners, local curvatures, and shapes.

Sparsity was first proposed as a model of simple cells in the
visual cortex [31]. Up to now, it has been a key element of DBNs
learning through exploiting a variant of auto-encoders, RBM, or
other unsupervised learning algorithms. In practice, there are
many ways to enforce some form of sparsity on the hidden layer
representation of a deep architecture. The first successful deep
architecture exploiting sparsity of representation involved auto-
encoders [9]. Sparsity was achieved with a so-called sparsifying
logistic, by which the codes are obtained with a nearly saturating
logistic whose offset is adapted to maintain a low average number
of times that the code is significantly non-zero. One year later the
same group introduced a somewhat simple variant [28] through
assigning a Student-t prior on the coders. In the past, the Student-t
prior was used to obtain sparse MAP estimates for the codes
generating an input [29] in computational neuroscience models of
the V1 visual cortex area. Another approach also related to
computational neuroscience involves two levels of sparse RBMs
[24]. Sparsity is achieved with a regularization term that penalizes
a deviation of the expected activation of hidden units from a fixed
low-level. One level of sparse coding of images results in filters
very similar to those seen in V1. When training a sparse deep
belief network, the second level appears to detect visual features
similar to those observed in area V2 of visual cortex.

From the point of view of information theory, one of the major
principles for finding concise representations is rate distortion (RD)
theory [32], which focuses on the problem of determining minimal
amount of information that should be communicated over a channel,
so that a compressed representation of the original data can be
approximately reconstructed at the output data without exceeding a
given distortion. Sparse coding methods can be interpreted as special
cases of RD theory [33]. For deep multi-layer neural networks,
hidden layers without narrow bottleneck may result in redundant
and continuous-valued codes [34]. We hold that incorporating the
constraint of a minimum rate of information flow into the training
process of multi-layer neural networks is able to make networks
obtain succinct representations. From this point of view, we propose
in this paper a novel version of sparse DBNs for unsupervised feature
extraction by taking inspiration from the idea of RD theory. In DBNs,
activation probability of the hidden units over a data vector is always
regarded as its representation or code. Therefore, in our approach,
a small code rate is achieved by adding a constraint on the activation
probability of hidden units. The used constraint is L1-norm of this
activation probability. Meanwhile, Kullback–Leibler divergence
between the distribution of data and the equilibrium distribution
defined by the building block of DBN is considered as a measurement
of distortion. More specifically, the novel approach is implemented
by a trade-off between the L1 regularizer and the Kullback–Leibler
divergence. The novel approach has the advantages that representa-
tions with small information rate can be automatically learnt and the
hierarchical representations (which mimics computations in the
cortical hierarchy) can be obtained. Furthermore, compared to PCA
and several basic algorithms of DBN, the new approach learns more
discriminative representations.

The remainder of this paper is organized as follows. We first
describe the DBN's structure and building block, RBM, with their
learning rules in Section 2. Section 3 introduces the novel sparse
DBN based on RD theory, and provides its learning rule. In Section 5,
the novel sparse DBN is compared with several methods qualita-
tively (the hierarchical bases learned by algorithms) and quantita-
tively (the classification performance of subsequently built

classifier, starting from the representations obtained by unsuper-
vised learning). Finally, this paper is concluded with a summary
and some directions for further research in Section 6.

2. Deep belief network (DBN) and its building block

DBNs are probabilistic generative models that contain many
layers of hidden variables, in which each layer captures high-
order-correlations between the activities of hidden features in the
layer below. A key feature of this algorithm is its greedy layer-by-
layer training that can be repeated several times to learn a deep,
hierarchical model. The main building block of a DBN is a bipartite
undirected graphical model called the Restricted Boltzmann
Machine (RBM). In this section, we provide a brief technical
overview of RBM and the greedy learning algorithm for DBNs.

2.1. Restricted Boltzmann machine (RBM)

RBM [10,11,35,36] is a two-layer, bipartite, undirected graphical
model with a set of (binary or real-valued) visible units (random
variables) v of dimension D representing observable data, and a set
of binary hidden units (random variables) h of dimension K
learned to represent features that capture higher-order correla-
tions in the observable data. These two layers are connected by a
symmetrical weight matrix WARD�K , whereas there are no con-
nections within a layer. Fig. 1 illustrates the undirected graphical
model of an RBM.

RBM can be viewed as a Markov random field that tries to
represent input data with hidden units. Here, the weights encode a
statistical relationship between the hidden units and the visible
units. The joint distribution over the visible and hidden units is
defined by

Pðv;hÞ ¼ 1
Z
exp ð�Eðv;hÞÞ; ð1Þ

Z ¼∑
v
∑
h
exp ð�Eðv;hÞÞ; ð2Þ

where Z is a normalization constant. Eðv;hÞ denotes the energy of
the state ðv;hÞ. If the visible units are binary-valued, the energy
function can be defined as

Eðv;hÞ ¼ � ∑
D

i ¼ 1
∑
K

j ¼ 1
viWijhj� ∑

K

j ¼ 1
bjhj� ∑

D

i ¼ 1
civi; ð3Þ

where bj and ci are respectively hidden and visible unit biases.
If the visible units are real-valued, we can define the energy
function by adding a quadratic term to make the distribution well
defined, that is,

Eðv;hÞ ¼ 1
2

∑
D

i ¼ 1
v2i � ∑

D

i ¼ 1
∑
K

j ¼ 1
viWijhj� ∑

K

j ¼ 1
bjhj� ∑

D

i ¼ 1
civi: ð4Þ

From the energy function, we can see that the hidden units hj are
independent of each other when conditioning on v since there are no
direct connections between hidden units. Similarly, the visible units
vi are also independent of each other when conditioning on h.

Fig. 1. Undirected graphical model of an RBM.
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