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a b s t r a c t

This article considers the minimum sum-of-squares clustering (MSSC) problem. The mathematical

modeling of this problem leads to a min-sum-min formulation which, in addition to its intrinsic bi-level

nature, has the significant characteristic of being strongly nondifferentiable. To overcome these

difficulties, the proposed resolution method, called hyperbolic smoothing, adopts a smoothing strategy

using a special C1 differentiable class function. The final solution is obtained by solving a sequence of

low dimension differentiable unconstrained optimization subproblems which gradually approach the

original problem. This paper introduces the method of partition of the set of observations into two

nonoverlapping groups: ‘‘data in frontier’’ and ‘‘data in gravitational regions’’. The resulting combi-

nation of the two methodologies for the MSSC problem has interesting properties, which drastically

simplify the computational tasks.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis deals with the problems of classification of a
set of patterns or observations, in general represented as points in
a multidimensional space, into clusters, following two basic and
simultaneous objectives: patterns in the same clusters must be
similar to each other (homogeneity objective) and different from
patterns in other clusters (separation objective) [1–3].

Clustering is an important problem that appears in a broad
spectrum of applications, whose intrinsic characteristics engender
many approaches to this problem, as described by Dubes and Jain
[4], Jain and Dubes [5] and Hansen and Jaumard [6].

Clustering analysis has been used traditionally in disciplines
such as: biology, biometry, psychology, psychiatry, medicine,
geology, marketing and finance. Clustering is also a fundamental
tool in modern technology applications, such as: pattern recogni-
tion, data mining, web mining, image processing, machine
learning and knowledge discovering.

In this paper, a particular clustering problem formulation is
considered. Among many criteria used in cluster analysis, the
most natural, intuitive and frequently adopted criterion is the
minimum sum-of-squares clustering (MSSC). This criterion
corresponds to the minimization of the sum-of-squares of
distances of observations to their cluster means, or equivalently,
to the minimization of within-group sum-of-squares. It is a

criterion for both the homogeneity and the separation objectives.
According to the Huygens Theorem, minimizing the within-
cluster inertia of a partition (homogeneity within the cluster) is
equivalent to maximizing the between-cluster inertia (separation
between clusters).

The minimum sum-of-squares clustering (MSSC) formulation
produces a mathematical problem of global optimization. It is
both a nondifferentiable and a nonconvex mathematical problem,
with a large number of local minimizers.

There are two main strategies for solving clustering problems:
hierarchical clustering methods and partition clustering methods.
Hierarchical methods produce a hierarchy of partitions of a set of
observations. Partition methods, in general, assume a given
number of clusters and, essentially, seek the optimization of an
objective function measuring the homogeneity within the clusters
and/or the separation between the clusters.

For the sake of completeness, we present first the Hyperbolic
Smoothing Clustering Method (HSCM), Xavier [7]. Basically the
method performs the smoothing of the nondifferentiable min-

sum-min clustering formulation. This technique was developed
through an adaptation of the hyperbolic penalty method origin-
ally introduced by Xavier [8]. By smoothing, we fundamentally
mean the substitution of an intrinsically nondifferentiable two-
level problem by a C1 unconstrained differentiable single-level
alternative.

Additionally, the paper presents a new, faster, methodology.
The basic idea is the partition of the set of observations into two
nonoverlapping parts. By using a conceptual presentation, the
first set corresponds to the observation points relatively close to
two or more centroids. This set of observations, named boundary
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band points, can be managed by using the previously presented
smoothing approach. The second set corresponds to observation
points significantly closer to a single centroid in comparison with
others. This set of observations, named gravitational points, is
managed in a direct and simple way, offering much faster
performance.

This work is organized in the following way. A step-by-step
definition of the minimum sum-of-squares clustering problem is
presented in the next section. The original hyperbolic smoothing
approach and the derived algorithm are presented in Section 3. The
boundary and gravitational regions partition scheme and the new
derived algorithm are presented in Section 4. Computational results
are presented in Section 5. Brief conclusions are drawn in Section 6.

2. The minimum sum-of-squares clustering problem

Let S¼{s1,y,sm} denote a set of m patterns or observations
from an Euclidean n-space, to be clustered into a given number q

of disjoint clusters. To formulate the original clustering problem
as a min-sum-min problem, we proceed as follows. Let xi, i¼1,y,q
be the centroids of the clusters, where each xiARn. The set of
these centroid coordinates will be represented by XARnq. Given a
point sj of S, we initially calculate the Euclidian distance from sj to
the center in X that is nearest. This is given by

zj ¼ min
i ¼ 1,...,q

Jsj�xiJ2: ð1Þ

The most frequent measurement of the quality of a clustering
associated to a specific position of q centroids is provided by the
sum of the squares of these distances, which determines the MSSC
problem:

minimize
Xm

j ¼ 1

z2
j

subject to zj ¼ min
i ¼ 1,...,q

Jsj�xiJ2, j¼ 1, . . . ,m ð2Þ

3. The hyperbolic smoothing clustering method

Considering its definition, each zj must necessarily satisfy the
following set of inequalities:

zj�Jsj�xiJ2r0, i¼ 1, . . . ,q: ð3Þ

Substituting these inequalities for the equality constraints of
problem (2), the relaxed problem is produced:

minimize
Xm

j ¼ 1

z2
j

subject to zj�Jsj�xiJ2r0, j¼ 1, . . . ,m, i¼ 1, . . . ,q: ð4Þ

Since the variables zj are not bounded from below, the
optimum solution of the relaxed problem will be zj¼0, j¼1, y,
m. In order to obtain the desired equivalence, we must, therefore,
modify problem (4). We do so by first letting jðyÞ denote
max{0, y} and then observing that, from the set of inequalities
in (4), it follows that

Xq

i ¼ 1

jðzj�Jsj�xiJ2Þ ¼ 0, j¼ 1, . . . ,m: ð5Þ

Using (5) in place of the set of inequality constraints in (4), we
would obtain an equivalent problem maintaining the undesirable
property that zj, j¼1, y, m still has no lower bound. Considering,
however, that the objective function of problem (4) will force each
zj, j¼1,y,m, downward, we can think of bounding the latter

variables from below by including an e perturbation in (5). So, the
following modified problem is obtained:

minimize
Xm
j ¼ 1

z2
j

subject to
Xq

i ¼ 1

jðzj�Jsj�xiJ2ÞZe, j¼ 1, . . . ,m ð6Þ

for e40. Since the feasible set of problem (2) is the limit of that of
(6) when e-0þ , we can then consider solving (2) by solving a
sequence of problems like (6) for a sequence of decreasing values
for e that approaches 0.

Analyzing the problem (6), the definition of function j endows
it with an extremely rigid nondifferentiable structure, which
makes its computational solution very hard. In view of this, the
numerical method we adopt for solving problem (1), takes a
smoothing approach. From this perspective, let us define the
function:

fðy,tÞ ¼ ðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þt2

q
Þ=2 ð7Þ

for yAR and t40.
Function f has the following properties:

(a) fðy,tÞ4jðyÞ,8t40;
(b) limt-0fðy,tÞ ¼jðyÞ;
(c) fðy,tÞ is an increasing convex C1 function in variable y.

By using function f in the place of function j, the problem

minimize
Xm
j ¼ 1

z2
j

subject to
Xq

i ¼ 1

fðzj�Jsj�xiJ2,tÞZe, j¼ 1, . . . ,m ð8Þ

is produced.
Now, the Euclidean distance Jsj�xiJ2 is the single nondiffer-

entiable component on problem (8). So, to obtain a completely
differentiable problem, it is still necessary to smooth it. For this
purpose, let us define the function

yðsj,xi,gÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

l ¼ 1

ðsl
j�xl

iÞ
2
þg2

vuut ð9Þ

for g40.
Function y has the following properties:

(a) limg-0yðsj,xi,gÞ ¼ Jsj�xiJ2;
(b) y is a C1 function.

By using function y in place of the distance Jsj�xiJ2, the
following completely differentiable problem is now obtained:

minimize
Xm
j ¼ 1

z2
j

subject to
Xq

i ¼ 1

fðzj�yðsj,xi,gÞ,tÞZe, j¼ 1, . . . ,m: ð10Þ

So, the properties of functions f and y allow us to seek a
solution to problem (6) by solving a sequence of subproblems like
problem (10), produced by the decreasing of the parameters g-0,
t-0, and e-0.

Since zjZ0,j¼ 1, . . . ,m, the objective function minimization
process will work for reducing these values to the utmost. On the
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