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a b s t r a c t

In this paper, a new multi-class classification framework incorporating geometric data relationships
described in both intrinsic and penalty graphs in multi-class Support Vector Machine is proposed. Direct
solutions are derived for the proposed optimization problem in both the input and arbitrary-dimensional
Hilbert spaces for linear and non-linear multi-class classification, respectively. In addition, it is shown
that the proposed approach constitutes a general framework for SVM-based multi-class classification
exploiting geometric data relationships, which includes several SVM-based classification schemes as
special cases. The power of the proposed approach is demonstrated in the problem of human action
recognition in unconstrained environments, as well as in facial image and standard classification pro-
blems. Experiments indicate that by exploiting geometric data relationships described in both intrinsic
and penalty graphs the SVM classification performance can be enhanced.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Support Vector Machine (SVM) [43] is a standard classification
technique that has been shown to provide state-of-the-art per-
formance in many classification problems. In addition to their
good generalization ability, the popularity of SVMs is a con-
sequence of their ability to represent the classification problem at
hand as a quadratic convex optimization problem, leading to a
global optimal solution, while non-linear decision functions can be
learned by exploiting the well-known kernel trick [31,39,25,36].

The standard SVM is a binary classifier that learns a hyperplane
separating two classes with maximum margin. While the max-
imum margin property of the SVM classifier is very powerful, it
has been shown that enhanced performance can be achieved by
incorporating geometric data information in the SVM optimization
process. This is due to the fact that, by exploiting such additional
information, the classifier takes into account geometric properties
of the classes in addition to the position of the support vectors.
Specifically, it has been shown that the incorporation of the intra-
class variance information (described by the corresponding
within-class scatter matrix) in the SVM optimization problem
leads to enhanced performance in frontal face verification [42], as
well as in various other classification problems, e.g. gender
determination, eye glass detection and neutral facial expression

recognition and standard classification problems [50,45,51,19]. In
addition, it has been shown that the exploitation of intrinsic graph
structures defined under the Graph Embedding framework [49]
further enhances the performance of the resulting classifier [1].
Graph Embedding, is a general framework which can be exploited
in order to define Subspace Learning techniques, such as Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Marginal Discriminant Analysis (MDA) and Local Fisher Dis-
criminant Analysis (LFDA). This is achieved by defining an intrinsic
graph expressing properties of the data that are subject to mini-
mization (e.g. the within-class variance in the case of LDA) and a
penalty graph expressing properties of the data that are subject to
maximization (i.e. the between-class variance in the case of LDA).

In all the above mentioned SVM-based classification approa-
ches, the One-Versus-Rest (OVR) or One-Versus-One (OVO) binary
classifier combination schemes are employed in order to perform
multi-class classification [35]. That is, for a classification problem
formed by data belonging to K classes, multiple1 binary classifiers
are trained, each of which solves a sub-problem of the original
multi-class classification problem. In the test phase, a test sample
is introduced to all the binary classifiers and their responses are
combined in order to provide the final classification result [30].
Such an approach inherently sets the assumption that the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2016.02.002
0031-3203/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ358 408 267 830, þ306 974 027 924.
E-mail addresses: alexandros.iosifidis@tut.fi (A. Iosifidis),

moncef.gabbouj@tut.fi (M. Gabbouj).

1 The number of binary classifiers is equal to K for the OVR and KðK�1Þ
2 for the

OVO combination schemes. For the standard SVM formulation, combined OVR and
OVO classification schemes have also been used [20,27], where a model formed by
KrMrKðK�1Þ

2 binary classifiers is created.
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classification problems solved by the various binary classifiers are
independent. In order to overcome this assumption, multi-class
SVM formulations and their counterparts incorporating the
within-class variance of the training data in a multi-class SVM
formulation, have been proposed in [47,48,21,22,3].

In [21,22], only the case where the within-class variance of the
training data is exploited for SVM-based multi-class classification
is proposed. In addition, the non-linear extension of the proposed
classifiers is achieved by applying a two-step process. Specifically,
in [21], the training data are projected to the range of the within-
class scatter matrix first and standard multi-class SVM classifica-
tion is applied on the projected data [47,48]. In [22], it is shown
that the kernel formulation of the proposed multi-class classifier is
equivalent to applying kernel PCA on the training data, followed
by the application of the proposed linear classifier exploiting the
within-class variance of the projected training data.

In this paper, we propose a new optimization problem for SVM-
based multi-class classification exploiting geometric information
of the training data. To do this, we incorporate geometric data
information described in both intrinsic and penalty graphs as
designed in the context of the Graph Embedding framework.
Compared to the solution proposed in [1] exploiting only intrinsic
graphs for binary classification problems, the proposed classifier
exploits general graph structures expressing both intrinsic
(expressing data relationships to be minimized) and penalty
(expressing data relationships to be maximized) criteria, under a
multi-class SVM formulation. Compared to the solutions proposed
in [21,22] exploiting only the within-class variance of the training
data for multi-class classification, the proposed approach is able to
exploit more generic intrinsic graph structures, as well as penalty
ones. In addition, we propose a direct solution for the optimization
problem solved for non-linear data classification. Finally we show
that the proposed approach constitutes a general framework for
SVM-based multi-class classification exploiting geometric infor-
mation of the training data and that the methods in
[42,50,1,35,21,22,45] are special cases of the proposed approach.

We apply the proposed method in facial image and standard
classification problems and to the problem of human action
recognition in unconstrained environments, usually also referred
to as ‘action recognition in the wild’. A lot of research has been
conducted in this area during the last decade. The interested
reader may refer to [26]. Perhaps the most well studied and suc-
cessful approach for action representation is based on the Bag of
Words (BoWs) model [11]. According to this model, each action
video is represented by a vector obtained by applying quantization
on the features describing it and using a set of feature prototypes
forming the so-called codebook. This codebook is usually deter-
mined by clustering the features describing training action videos,
while discriminative codebook construction methods have also
been recently proposed [12]. This approach has been tested in
most of the existing benchmark datasets and its efficacy has been
proven, since it provides state-of-the-art performance in most
cases. We follow the state-of-the-art approach [46] describing
videos depicting actions by using five descriptor types, i.e. Histo-
gram of Oriented Gradient (HOG), Histogram of Optical Flow
(HOF), Motion Boundary Histogram along the direction x (MBHx),
Motion Boundary Histogram along the direction y (MBHy) and
(normalized) Trajectory, evaluated on the trajectories of densely
sampled interest points. Such an action description has been
evaluated in most of the existing benchmark datasets, where it has
been shown that it provides satisfactory performance (state-of-
the-art in most cases).

In summary, the contributions of the paper are as follows:

� A new optimization problem for SVM-based multi-class classi-
fication is proposed that exploits geometric data relationships
described in both intrinsic and penalty graphs.

� A new direct solution is proposed for the optimization problem
used to determine non-linear decision functions for multi-class
classification.

� The proposed approach is shown to constitute a general fra-
mework for SVM-based classification exploiting geometric data
information that includes several SVM-based classifiers as
special cases.

The reminder of the paper is organized as follows. We provide
an overview of related previous work in Section 2. The proposed
method is described in detail in Section 3. Experiments conducted
in order to evaluate its performance are described in Section 4.
Conclusions are drawn in Section 5.

2. Previous work

Let us denote by fxi; lig; i¼ 1;…;N a set of D-dimensional
vectors xi and the corresponding class labels liAf1;…;Kg. We
would like to train a multi-class classification scheme that is able
to classify a test vector xtARD to one of the K classes.

2.1. Binary SVM classifier

As previously described, multi-class classification can be
achieved by training multiple binary classifiers [30]. Let us define
the binary labels yiAf�1;1g determining whether the vectors xi

belong to the positive or negative class of the binary classification
problem at hand. In SVM, the optimal separating hyperplane is the
one that separates the two classes with maximum margin. The
SVM optimization problem is defined as

min
w;b

1
2
wTwþc

XN
i ¼ 1

ξi; ð1Þ

subject to the constraints:

yiðwTxiþbÞZ1�ξi; ξiZ0; i¼ 1;…;N; ð2Þ
where wARD is the vector defining the separating hyperplane, b
represents the offset of the hyperplane from the origin, ξi; i¼ 1;
…;N are the so-called slack variables and c40 is a regularization
parameter denoting the importance of the training error in the
optimization problem. The solution of the above-described opti-
mization problem is a quadratic convex optimization problem of
the form:

max
α

XN
i ¼ 1

αi�
1
2

XN
i ¼ 1

XN
j ¼ 1

αiαjyiyjx
T
i xj; ð3Þ

subject to the constraint 0rαirc; i¼ 1;…;N. αARN is a vector
containing the Lagrange multipliers αi; i¼ 1;…;N.

In order to derive non-linear decision functions, the so-called
kernel trick is exploited. That is, it is assumed that the training
vectors xi are non-linearly mapped to an arbitrary-dimensional
feature space F (usually having the properties of Hilbert spaces
[31,39]) by employing a function ϕð�Þ : xiARD-ϕðxiÞAF . In F , dot
products between training vectors are defined by a kernel function
κð�; �Þ and are stored in the so-called kernel matrix KARN�N . Thus,
(3) can be given in the form:

max
α

1Tα�1
2
ðα○yÞTKðα○yÞ; ð4Þ

where yARN is a vector containing the binary labels yi; i¼ 1;…;N
and ○ denotes the Hadamard (element-wise) product operator.
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