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a b s t r a c t

This paper presents a new algorithm to approximate large margin solutions in binary classification
problems with arbitrary q-norm or p-margin, where p and q are Holder conjugates. We begin by pre-
senting the online fixed p-margin perceptron algorithm (FMPp) that solves linearly separable classifi-
cation problems in primal variables and consists of a generalization of the fixed margin perceptron
algorithm (FMP). This algorithm is combined with an incremental margin strategy called IMAp, which
computes an approximation of the maximal p-margin. To achieve this goal, IMAp executes FMPp several
times with increasing p-margin values. One of the main advantages of this approach is its flexibility,
which allows the use of different p-norms in the same primal formulation. For non-linearly separable
problems, FMPp can be used with a soft margin in primal variables. The incremental learning strategy
always guarantees a good approximation of the optimal p-margin and avoids the use of linear or higher
order programming methods. IMAp was tested in different datasets obtaining similar results when
compared to classical L1 and L1 linear programming formulations. Also, the algorithm was compared to
ALMAp and presents superior results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the main problems in machine learning consists in
determining a linear function able to discriminate a set of vectors
in input space belonging to two different classes. A critical issue in
this scenario is achieving a high generalization performance. In
this sense, the development of maximal margin classifiers, such as
Support Vector Machines (SVMs), was a significant contribution to
the field [1]. In the context of linearly separable problems, SVMs
determine a hyperplane that maximizes the margin between the
two classes. This problem has been originally formulated as a
quadratic optimization problem, where the objective is to mini-
mize the Euclidean norm of the normal vector. For large datasets
this solution may be inefficient in terms of computational costs.
Also, it is known that the p-norm minimization, for p¼1 or p¼1,
results in a linear programming problem with a much lower
computational cost and similar generalization performance.
Indeed, formulations based on linear programming have been
developed as an option for SVMs, providing scalability and lower
computational costs when compared with quadratic programming
solutions [2–4]. However, in order to obtain the maximal margin
hyperplane, these formulations are designed specifically for either

L1 or L1 norms. In addition, they are usually solved in batch mode,
since they require the use of linear programming solvers.

In recent years, considerable attention has been given to find-
ing efficient online algorithms to construct large margin classifiers
that avoid the complexity of quadratic programming [5–7]. Some
of these are motivated by the fact that, usually, an adequate
approximation of the maximal margin is sufficient to have good
generalization performance. For instance, Gentile [5] proposes a p-
norm formulation and introduces the Approximate Large Margin
Algorithm (ALMAp), which can be used to find an α-approximation
to the maximal p-margin for pZ2. In addition, Leite and Fonseca
Neto [7] present the Incremental Margin Algorithm (IMA), which
is able to obtain a large L2 margin solution by successively solving
classification problems with increasing margin sizes, using the
Fixed Margin Perceptron (FMP). In terms of theoretical bound, it
has been shown in [7] that IMA has the same upper bound as
ALMA2 for the number of updates needed to obtain an α-
approximation to the maximal margin, i.e., O R2

α2γn2

� �
. However,

computational experiments demonstrate that IMA outperforms
ALMA2 in both accuracy and computational efficiency [7].

This paper extends the results presented by Leite and Fonseca
Neto [7] by first introducing the Fixed p-Margin Perceptron
(FMPp), which solves binary classification problems for any given
feasible fixed p-margin, for any p (i.e., for pZ1, including p¼1).
The FMPp algorithm is then coupled with IMA to produce the
Incremental p-Margin Algorithm (IMAp), which is able to compute
an α-approximation to the maximal p-margin by solving
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successive classification problems using FMPp with increasing
p-margins values. For p¼2, IMA2 and FMP2 are equivalent to IMA
and FMP presented in [7]. Based on the theoretical bound on the
number of updates for IMA2 [7], we propose in this paper a
decaying rule for the learning rate among the successive calls to
FMPp, which improves the efficiency of the method. We show
through numerical experiments that IMAp produces superior
results to ALMAp and has the advantage that it can be interrupted
any time after the first call to FMPp. The correctness of the IMAp is
demonstrated by comparing the results for L1 and L1 norms with
the exact solution obtained from the linear programming for-
mulations. This paper also introduces a novel strategy to allow soft
margins in the primal variables for non-linearly separable datasets
and for data with outliers. Flexible margins are very useful in the
p-norm setting since no dual formulation is possible for pa2, and
hence, the kernel trick cannot be used. The soft margin concept
was initially proposed by Cortes and Vapnik [8] and considers the
linear penalty of the slack variables. In contrast, FMPp adopts the
quadratic penalty of slack variables as considered by Schölkopf
and Smola [9].

As an illustration of the applicability of the proposed method,
we consider the problem of feature selection [10]. In this sense, the
algorithm performs the L1 norm minimization in order to obtain a
sparse solution for the normal vector and a separating hyperplane
that reflects the maximization of the L1 margin [11]. The use of a
large margin classifier with a built-in regularization technique that
constraints the magnitudes of the components of the normal
vector generating sparsity has been employed as an alternative to
combinatorial search that demands large computational effort
[12–14]. To that effect, IMAp can be coupled with a greedy back-
ward elimination method, such as Recursive Feature Elimination
(RFE) algorithm [15], enabling the elimination of a large number of
features at a time. Such approach, which combines RFE with an
online classification algorithm has been proposed previously by
Gentile [16], where the author couples ALMAp with RFE algorithm
and adopts for p the value max 2; lnf

� �
, where f is the cardinality

of the current set of features.
In a different context, we mention the development of kernel

based classifiers in the dual space that adopt a Bayesian learning
approach and obtain another form of sparseness, which is related
to the number of support vectors in the final solution [17–19].
These methods have two main advantages: they reduce the
computational effort in predicting new samples and increase the
generalization performance [17]. This approach is often based on
regularization through the minimization of some Lp norm in order
to control the complexity of the solutions. However, the objective
of this approach is different from what is considered in this paper.
Here, we are concerned with the problem in primal variables and
therefore the sparseness obtained in minimizing the L1 norm is
with respect to the normal vector of the solution, which can be
useful for feature selection.

The remaining of this paper is structured as follows. Section 2
describes a flexible formulation for the binary classification pro-
blem with arbitrary norm and introduces some preliminary con-
cepts that will be used throughout this work. Section 3 presents
the development of the FMPp algorithm which can be used to
obtain a separating hyperplane given a fixed geometric p-margin.
Next, Section 4 introduces the incremental strategy used to obtain
an α-approximation of the maximal p-margin solution. In Section
5, we revised the special formulations of linear programming
developed for L1 and L1 norms. Section 6 contains the computa-
tional experiments and results. Finally, in Section 7, some final
considerations and conclusions are presented.

2. The binary linear classification problem with p-Norm

Let Z ¼ zi ¼ xi; yi
� �

: iA 1;…;mf g� �
be a training set composed

of points xiARd and labels yiA �1; þ1f g. In addition, let Zþ and
Z� be defined as the sets xi; yi

� �
AZ : yi ¼ þ1

� �
and

xi; yi
� �

AZ : yi ¼ �1
� �

, respectively. A binary linear classification
problem consists of finding a hyperplane, which is given by its
normal vector wARd and a constant bAR, such that the points in
Zþ and Z� lie separated in the two half spaces generated by it.
That is, we look for w;bð Þ such that:

yi w � xiþbð ÞZ0; for all xi; yi
� �

AZ:

Clearly, this hyperplane may not exist for some training sets Z.
When it exists, Z is usually called linearly separable. We suppose
that Z is linearly separable throughout the paper, unless otherwise
stated.

We say that Z accepts a margin γZ0 when there is a hyper-
plane H≔ xARd : w � xþb¼ 0

n o
such that:

yi w � xiþbð ÞZγ; for all xi; yi
� �

AZ:

In this case, we define two additional hyperplanes parallel toH,
given by Hþ≔ xARd : w � xþ b�γ

� �¼ 0
n o

and H�≔ xARd :
n

w � xþ bþγ
� �¼ 0g. The distance between these two parallel

hyperplanes under a p-norm is given by [20]:

distp H� ;Hþ� �¼ � b�γ
� �þ bþγ

� �� �
‖w‖q

¼ 2γ
‖w‖q

;

where ‖ � ‖q is the conjugated norm, where p and q satisfy
1=pþ1=q¼ 1. Let γpg≔distp H� ;Hþ� �

=2, we call this γpg the geo-
metric p-margin between the hyperplanes Hþ andH� . In this way,
we say that Z accepts a geometric p-margin γpgZ0 when there
exists a hyperplane with w; bð Þ such that:

yi w � xiþbð ÞZγpg‖w‖q; for all xi; yi
� �

A Z:

3. Fixed p-margin perceptron – FMPp

Given a fixed p-margin γf and a training set Z, which accepts γf
as geometric p-margin, consider the problem of finding a separ-
ating hyperplane w; bð Þ such that:

yi w � xiþbð ÞZγf ‖w‖q; for all xi; yi
� �

AZ: ð1Þ

For that, let us define the following error function Jq : Rdþ1-R

which is given by:

Jq w; bð Þ≔
X

xi ;yið ÞAM
γf ‖w‖q�yi w � xiþbð Þ;

where M is a subset of Z that violates Eq. (1) for the choice of data
w; bð Þ, that is:

M≔ xi; yi
� �

AZ : yi w � xiþbð Þoγf ‖w‖q
n o

:

Using the online stochastic gradient approach, the minimiza-
tion process begins with a initial value w0; b0

� �
, usually 0;0ð Þ. At

each iteration t of the algorithm, a single pair zi ¼ xi; yi
� �

is chosen

and verified against wt ; bt
� �

. If this pair is a mistake, that is, if

yi wt � xiþbt
� �

oγf ‖wt‖q, then a new normal vector wtþ1 and

constant btþ1 are constructed using the gradient of Jq. In this way,
taking the partial derivatives of Jq with respect to wj, jA 1;…; d

� �
,
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