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In this paper, we propose a new set of orthogonal moments based on Exponent functions, named
Exponent-Fourier moments (EFMs), which are suitable for image analysis and rotation invariant pattern
recognition. Compared with Zernike polynomials of the same degree, the new radial functions have
more zeros, and these zeros are evenly distributed, this property make EFMs have strong ability in
describing image. Unlike Zernike moments, the kernel of computation of EFMs is extremely simple.
Theoretical and experimental results show that Exponent-Fourier moments perform very well in terms
of image reconstruction capability and invariant recognition accuracy in noise-free, noisy and smooth
distortion conditions. The Exponent-Fourier moments can be thought of as generalized orthogonal
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1. Introduction

Image moments and their nonlinear combinations have been used
as global features in a variety of applications in image analysis, such as
visual pattern recognition [1,2], template matching [3], object classi-
fication [4], watermarking [5], robot sensing techniques [6], and edge
detection [7], because they are able to remain invariant in describing
an image that has been translated, rotated and scaled. Among the
different types of moments, geometric moments [8] and their exten-
sions have played important roles in image analysis. However, these
moments are not orthogonal. Consequently, the reconstruction of
image from these moments is quite difficult. Moreover, it has a certain
degree of information redundancy and sensitivity to noise [9].

Teague [10] suggested that orthogonal moments based on ortho-
gonal polynomials to overcome the problems associated with geo-
metric moments, such as Zernike and Legendre moments based on
Zernike polynomials and Legendre polynomials respectively. Zernike
moments (ZMs) and Legendre moments are orthogonal so that they
are able to store information with minimal information redundancy
and have the property of being rotation invariant. It has been widely
used in character recognition [11] and image watermarking [12]. Teh
et al. [13] and Mukundan et al. [14] studied the image representation
capability, information redundancy, noise sensitivity, and proved that
the orthogonal image moments perform better than geometric
moments, rotational moments and complex moments in image
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representation and anti-noise capability, and have less information
redundancy.

In this way, Sheng et al. proposed orthogonal Fourier-Mellin
moments (OFMs) [15] based on a set of radial polynomials, and
proved that orthogonal Fourier-Mellin moments have better perfor-
mance than Zernike moments in terms of image reconstruction
capability and noise sensitivity, especially in describing small image.
And then, Zi-liang Ping et al. proposed Chebyshev-Fourier moments
(CEMs) [16] based on Chebyshev polynomials and Jacobi-Fourier
moments (JFMs) [17] based on Jacobi polynomials. They also pointed
out that Jacobi-Fourier moments are the general form of the image
moments based on polynomials. The variation of two parameters in
Jacobi polynomials, @ and g, can form various types of orthogonal
moments: Legendre-Fourier moments (¢=1, p=1); Chebyshev-
Fourier moments (« =2, = 3/2); Orthogonal Fourier-Mellin mo-
ments (a=2, f=2); Zernike moments and pseudo-Zernike mo-
ments, and so on. In 2003, Haiping Ren proposed Radial harmonic
Fourier moments (RHFMs) based on the trigonometric functions [18].
In 2010, Bin Xiao constructed Bessel-Fourier moments (BFMs) [19]
using the Bessel polynomials of the first kinds. And Pew-Thian Yap
et al. proposed Polar Harmonic Transforms (PHT) [20] which include
Polar Complex Exponential Transforms (PCET) based on Exponent
functions, Polar Cosine Transforms (PCT) based on Cosine functions
and Polar Sine Transforms (PST) based on Sine functions. So far, Polar
Harmonic Transforms have the best performance overall among
known orthogonal moments.

All kinds of moments based on polynomials are quite computa-
tionally expensive, because there is a great deal of exponential
operation in these radial polynomials. To reduce the computational


www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.02.014
http://dx.doi.org/10.1016/j.patcog.2014.02.014
http://dx.doi.org/10.1016/j.patcog.2014.02.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.02.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.02.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.02.014&domain=pdf
mailto:frank.h@qq.com
http://dx.doi.org/10.1016/j.patcog.2014.02.014

H.-t. Hu et al. / Pattern Recognition 47 (2014) 2596-2606 2597

complexity, Yang et al. proposed an algorithm about the fast computa-
tion of Legendre moments [21], Papakostas and Chandan Singh et al.
presented the efficient algorithm for the computation of the orthogo-
nal Fourier-Mellin moments [22]| and Zernike moments [23] respec-
tively. In spite of this, their methods still need a great deal of
computation, which costs a lot of CPU time. Ping et al. pointed out
that the radial functions can be arbitrary functions if the integral of
the moment's calculation is performed in the interval from zero to
the scale factor [16]. This conclusion implies that it is possible to
choose proper radial functions other than orthogonal polynomials
to construct new moments. In this way, the exponent function e* can
be chosen as radial function to construct new moments. We can
compute the radial function and angular factor as a united one, for the
radial functions can be incorporated into the angular factors in the
new moments. Therefore, computational complexity of the new
moments is far less than ZMs, BFMs and RHFM:s. In this paper, these
new orthogonal moments are called Exponent-Fourier moments
(EFMs) which are similar to RHFMs and PCET. In polar coordinate
system, rotating the image does not change the magnitudes of its
Exponent-Fourier moments, they are rotation invariants. Similar to
other orthogonal moments based on polynomials, it is easy for image
reconstruction and rotation invariant recognition. In this paper,
comparison with Zernike moments, BFMs, RHFMs and PCET is
provided.

The idea of constructing orthogonal image moments based on
complex exponent function is proposed for the first time by the
first author in his doctoral thesis [24]. Jiang [25] applied the Fast
Fourier Transform (FFT) in the computation of EFMs, which makes
the computation more accurate and fast.

The paper is organized as follows. In Section 2, the definitions
of ZMs, BFMs, RHFMs and PCET are given. In Section 3, definitions
of Exponent-Fourier moments and Exponent-Fourier moments
invariants are presented. Section 4 discusses the properties and
performance comparison of EFMs, BFMs, ZMs, RHFMs and PCET. In
Section 5, the comparative analysis of the proposed approach with
BFMs, ZMs, RHFMs and PCET in terms of the image reconstruction
capability, recognition accuracy and computational load is pro-
vided. Section 6 concludes the paper.

2. Zernike moments and Bessel-Fourier moments

In this section, we review the definitions of the Zernike
moments and Bessel-Fourier moments.

2.1. Zernike moments

The Zernike moments of order n with repetition m for a digital
image f(r,0) function are defined as

n+] 2r 1 "

Zin =" [ [ Wantr s oor dr do M
Voam(r, 0) = Rym(1)e™ )
B (n—|mi)/2 s (n—s)! 125
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where [V (1, 0)]* is the complex conjugate of [V (1, )]
2.2. Bessel-Fourier moments

The Bessel-Fourier moments based on the Bessel function of
the first kind in the polar coordinate are defined as

1
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where f(r,0) is the image and n=0, 1, 2,..., m=0, +1, +2,
+3... are the moment orders, a,= []v+1(/1n)2]/2, J,(nr) is the
Bessel polynomial in r of degree n, 4, is the n-th zero of J,(r).

2.3. Radial harmonic Fourier moments

The definition of Radial harmonic Fourier moments is as
follows:

Onm = /02” /O]f(r, O)H,(nexp(—jmé)r dr do (5)
where
\/LF if n=0
Hu(r) = \/g sin [(n+1)zr] if n=odd ©)
\@ cos (nxr) if n=even
where f@r,0) is the image and n=0,1,2,..,

m=0, +1, +2, +3... are the moment orders.

2.4. Polar Complex Exponential Transform

The definition of the Polar Complex Exponential Transform is as
follows:

1 2r 1 .
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where
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f(r,0) is the image and n=0, +1, +2,..,m=0, +1, +2, +3...
are the moment orders.

3. Exponent-Fourier moments

Exponent-Fourier moments are a set of moments based on the
Exponent function. In this section, definition of the radial function of
Exponent-Fourier moments is provided, and Exponent-Fourier
moments and Exponent-Fourier moments invariant are introduced.

3.1. The radial function of the Exponent-Fourier moments

An orthogonal function set Puy(r,0) is defined in a polar
coordinate system contains the radial function T,(r) and the
Fourier function exp(jmé):

an(r, 0) = Tn(T)eXP(fme) (9)
where
Tn(r) = Apexp(jnr) (10)

To make P,n,(r,0) are orthogonal over the interval 0<r<1,
0 <0 < 2x, namely

/02,r /01 Pum(r, 0)Py(r, O)r dr d0 = 278, (11)
Eq. (12) must be true:

/01 Tu(NTH()T dr = 6y, (12)
On substituting Eq. (10) into Eq. (12), we obtain Eq. (13)
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