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a b s t r a c t

Linear subspace representations of appearance variation are pervasive in computer vision. This paper
addresses the problem of robustly matching such subspaces (computing the similarity between them)
when they are used to describe the scope of variations within sets of images of different (possibly greatly
so) scales. A naïve solution of projecting the low-scale subspace into the high-scale image space
is described first and subsequently shown to be inadequate, especially at large scale discrepancies.
A successful approach is proposed instead. It consists of (i) an interpolated projection of the low-scale
subspace into the high-scale space, which is followed by (ii) a rotation of this initial estimate within the
bounds of the imposed “downsampling constraint”. The optimal rotation is found in the closed-form
which best aligns the high-scale reconstruction of the low-scale subspace with the reference it is
compared to. The method is evaluated on the problem of matching sets of (i) face appearances under
varying illumination and (ii) object appearances under varying viewpoint, using two large data sets. In
comparison to the naïve matching, the proposed algorithm is shown to greatly increase the separation of
between-class and within-class similarities, as well as produce far more meaningful modes of common
appearance on which the match score is based.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most commonly encountered problems in computer
vision is that of matching appearance. Whether it is images of local
features [1], views of objects [2] or faces [3], textures [4] or
rectified planar structures (buildings, paintings) [5], the task of
comparing appearances is virtually unavoidable in amodern computer
vision application. A particularly interesting and increasingly impor-
tant instance of this task concerns the matching of sets of appearance
images, each set containing examples of variation corresponding to a
single class.

A ubiquitous representation of appearance variation within a
class is by a linear subspace [6,7]. The most basic argument for
the linear subspace representation can be made by observing
that in practice the appearance of interest is constrained to
a small part of the image space. Domain-specific information
may restrict this even further e.g. for Lambertian surfaces
seen from a fixed viewpoint but under variable illumination
[8–10] or smooth objects across changing pose [11,12]. Moreover,
linear subspace models are also attractive for their low
storage demands – they are inherently compact and can be learnt

incrementally [13–18]. Indeed, throughout this paper it is assumed
that the original data from which subspaces are estimated is not
available.

A problem which arises when trying to match two subspaces –
each representing certain appearance variation – and which has
not as of yet received due consideration in the literature is that of
matching subspaces embedded in different image spaces, that is,
corresponding to image sets of different scales. This is a frequent
occurrence: an object one wishes to recognize may appear larger
or smaller in an image depending on its distance, just as a face
may, depending on the person's height and positioning relative to
the camera. In most matching problems in the computer vision
literature, this issue is overlooked. Here it is addressed in detail
and shown that a naïve approach to normalizing for scale in
subspaces results in inadequate matching performance. Thus, a
method is proposed which without any assumptions on the nature
of appearance that the subspaces represent constructs an optimal
hypothesis for a high-resolution reconstruction of the subspace
corresponding to low-resolution data.

In the next section, a brief overview of the linear subspace
representation is given first, followed by a description of the
aforementioned naïve scale normalization. The proposed solution
is described in this section as well. In Section 3 the two approaches
are compared empirically and the results are analysed in detail.
The main contribution and conclusions of the paper are summar-
ized in Section 4.
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2. Matching subspaces across scale

Consider a set X �Rd containing vectors which represent raster-
ized images:

X ¼ fx1;…; xNg ð1Þ
where d is the number of pixels in each image. It is assumed that
all of the images represented by members of X have the same
aspect ratio, so that the same indices of different vectors corre-
spond spatially to the same pixel location. A common representa-
tion of appearance variation described by X is by a linear subspace
of dimension D, where usually it is the case that Dbd. If mX is the
estimate of the mean of the samples in X,

mX ¼ 1
N

∑
N

i ¼ 1
xi; ð2Þ

then BXARd�D, a matrix with columns consisting of orthonormal
basis vectors spanning the D-dimensional linear subspace embedded
in a d-dimensional image space, can be computed from the corre-
sponding covariance matrix

CX ¼ 1
N�1

∑
N

i ¼ 1
ðxi�mXÞðxi�mXÞT : ð3Þ

Specifically, an insightful interpretation of BX is as the row and
column space basis of the best rank-D approximation to CX:

BX ¼ arg min
BARd�D

BT B ¼ I

min
ΛARD�D
Λij ¼ 0;ia j

‖CX�BΛBT‖2F ; ð4Þ

where ‖ � ‖F is the Frobenius norm of a matrix.

2.1. The “Naïve solution”

Let BXARdl�D and BY ARdh�D be two basis vectors matrices
corresponding to appearance variations of image sets containing
images with dl and dh pixels, respectively. Without loss of general-
ity, let also dlodh. As before, here it is assumed that all images
both within each set, as well as across the two sets, are of the same
aspect ratio. Thus, we wish to compute the similarity of sets
represented by orthonormal basis matrices BX and BY .

Subspaces spanned by the columns of BX and BY cannot be
compared directly as they are embedded in different image spaces.
Instead, let us model the process of an isotropic downsampling of
a dh-pixel image down to dl pixels with a linear projection realized
though a projection matrix PARdl�dh . In other words, for a low-
resolution image set X �Rdl ,

X ¼ fx1;…; xNg ð5Þ
there is a high-resolution set Xn �Rdh , such that

Xn ¼ fxn

i jxi ¼ Pxn

i ; i¼ 1;…;Ng: ð6Þ
The form of the projection matrix depends on (i) the projection
model employed (e.g. bilinear, bicubic, etc.) and (ii) the dimen-
sions of high and low scale images; see Fig. 1 for an illustration.

Under the assumption of a linear projection model, the least-
square error reconstruction of the high-dimensional data can be
achieved with a linear projection as well, in this case by PR which
can be computed as

PR ¼ PT ðPPT Þ�1: ð7Þ
Since it is assumed that the original data from which BX was
estimated is not available, an estimate of the subspace correspond-
ing to Xn can be computed by re-projecting each of the basis
vectors (columns) of BX into Rdh :

~B
n

X ¼ PRBX : ð8Þ

Note that in general ~B
n

X is not an orthonormal matrix, i.e.
~B
n

XT ~B
n

XaI. Thus, after re-projecting the subspace basis, it is
orthogonalized using the Householder transformation [19], produ-
cing a high-dimensional subspace basis estimate Bn

X which can be
compared directly with BY .

2.1.1. Limitations of the Naïve solution
The process of downsampling an image inherently causes a loss of

information. In re-projecting the subspace basis vectors, information
gaps are “filled in” through interpolation. This has the effect of con-
straining the spectrum of variation in the high-dimensional recon-
structions to the bandwidth of the low-dimensional data. Compared to
the genuine high-resolution images, the reconstructions are void of
high frequency detail which usually plays a crucial role in discrimina-
tive problems.

2.2. Proposed solution

We seek a constrained correction to the subspace basis Bn

X . To this
end, consider a vector xn

i in the high-dimensional image space, Rdh ,
which when downsampled maps onto xi in Rdl . As before, this is
modelled as a linear projection effected by a projection matrix P:

xi ¼ Pxn

i : ð9Þ

Writing the reconstruction of xn

i , computed as described in the
previous section, as xn

i þci, it has to hold

xi ¼ Pðxn

i þciÞ; ð10Þ

or, equivalently

0¼ Pci; ð11Þ
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Fig. 1. The projection matrix PAR25�100 modelling the process of downsampling a
10�10 pixel image to 5�5 pixels, using (a) bilinear and (b) bicubic projection
models, shown as an image. For the interpretation of image intensities see the
associated grey level scales on the right.

Fig. 2. A conceptual illustration of the main idea: the initial reconstruction of the
class subspace in the high dimensional image space is refined through rotation
within the constraints of the ambiguity constraint subspace.
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