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a b s t r a c t

Despite their wide spread use, nearest neighbour density estimators have two fundamental limitations:
Oðn2Þ time complexity and O(n) space complexity. Both limitations constrain nearest neighbour density
estimators to small data sets only. Recent progress using indexing schemes has improved to near linear
time complexity only.

We propose a new approach, called LiNearN for Linear time Nearest Neighbour algorithm, that yields the
first nearest neighbour density estimator having O(n) time complexity and constant space complexity, as far
as we know. This is achieved without using any indexing scheme because LiNearN uses a subsampling
approach for which the subsample values are significantly less than the data size. Like existing density
estimators, our asymptotic analysis reveals that the new density estimator has a parameter to trade off
between bias and variance. We show that algorithms based on the new nearest neighbour density estimator
can easily scale up to data sets with millions of instances in anomaly detection and clustering tasks.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Existing methods have utilised nearest neighbour density
estimators as the basis to solve all facets of pattern recognition
problems from classification and regression to clustering and
anomaly detection [13,5,15,11,7].

While existing nearest neighbour density estimators have been
effective, the time complexity is still basically Oðn2Þ because of the
need to find the nearest neighbour for every instance in a given
data set. This makes existing methods utilising nearest neighbour
density estimator impractical for problems with large data sets.
Recent research has substantially improved the k-nearest neigh-
bour search by introducing various indexing schemes to speed up
the search (e.g., Cover Trees [9], M-Trees [12] and Rn-Tree [8]) to
near linear time complexity.

The premise of the current research is that finding the nearest
neighbour for every instance in the given data set is inevitable which
leads to Oðn2Þ time complexity. Since the aim is to do density
estimation, we reject this premise and find a way to reduce the
number of pair-wise distance calculations required to achieve this aim.

We propose a new approach to nearest neighbour density
estimation. Instead of focusing on speeding up the nearest neigh-
bour search, the new approach first generates many local regions

from subsamples and then produces the final result in an ensemble
method. The speedup is achieved because the size of the subsam-
ples required is significantly smaller than the given data set. This
not only eliminates the need of using an indexing scheme but
enables the new density estimator to run in orders of magnitude
faster than existing nearest neighbour density estimators.

We make three contributions in this paper:

1. Introduce a new nearest neighbour density estimator that
defines local neighbourhoods using nearest neighbours in each
of the many subsamples by building a region centered at each
instance. This differs from the existing nearest neighbour
density estimators where the local neighbourhoods are defined
based on either k nearest neighbours or a fixed radius.

2. Provide an asymptotic analysis and it reveals that the new
density estimator has a parameter which trades off between
bias and variance, as in existing density estimators such as k-
nearest neighbour density estimators.

3. Demonstrate the advantages of the new approach over the
existing nearest neighbour density estimators in two tasks:
anomaly detection and clustering. The new approach reduces
the time complexity from Oðn2Þ to O(n) and the space complex-
ity complexity from O(n) to a constant. We call the new
approach LiNearN for Linear time Nearest Neighbour algorithm.

Since nearest neighbour density estimators are the core
mechanism in many pattern recognition algorithms, we will begin
the next section with a description of existing nearest neighbour
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density estimators. Section 3 introduces the new nearest neighbour
density estimator and provides the asymptotic analysis. Section 4
describes how both the existing and the new nearest neighbour
density estimators are applied to anomaly detection and clustering
tasks. Section 5 reports the empirical evaluation results. Discussion
and the conclusions are provided in the last two sections.

2. Existing nearest neighbour density estimators

We describe three existing nearest neighbour density estima-
tors below.

1. A k-nearest neighbour (k-NN) density estimator can be
expressed as follows [32,11]:

f kNNðxÞ ¼
jNðx; kÞj

n ∑
x0 ANðx;kÞ

‖x�x0‖p

where Nðx; kÞ is the set of k-nearest neighbours to x; and jSj
denotes the cardinality of set S, and ‖x�x0‖p denotes the
distance measured by Lp-norm between x and x0. The search
for nearest neighbours is conducted over D of size n, by using
the Lp-norm distance where D is the given data set.

2. A kth nearest neighbour density estimator is defined as follows
[25]:

f kthNNðxÞ ¼
jNðx; kÞj

nαðd; pÞ‖x�xk‖dp

where xk is the kth nearest neighbour to x and αðd; pÞ is the
volume of an unit ball in ðRd; LpÞ

3. An ε-neighbourhood density estimator is defined as follows:

f εðxÞ ¼
jNεðxÞj
nε

where NεðxÞ ¼ fqAD j ‖x�q‖prεg. Since the denominator nε is
the same for all x, it is usually omitted in the implementation
(e.g., in DBSCAN [15]).

Each of the above determines a local neighbourhood based on a
global parameter, i.e., k or ε; and the density is calculated based on
one variable: distance of k-nearest neighbours in fkNN or f kthNN
since the numerator is a constant k; and Nεð�Þ in f ε since the
denominator is a constant.

In addition, the nearest neighbour search is conducted over the
entire data set, D, which is the main computational expense of the
whole process; therefore, leading to a time complexity of Oðn2Þ for

n queries. Research has focused on reducing this cost by devising
different indexing schemes.

We suggest a new approach to compute density based on
nearest neighbour with the following distinguishing features:

� Both the number of instances in the local neighbourhood and
its volume are adaptive to the data distribution in the local
region; neither is fixed by a global parameter, unlike f kNNð�Þ,
f kthNNð�Þ and f εð�Þ.

� The nearest neighbour search is conducted over a data subset
which is significantly smaller than the given data set.

We describe the new density estimator in the next section.

3. New nearest neighbour density estimator

We propose a new nearest neighbour density estimator, called
LiNearN for Linear time Nearest Neighbour algorithm. It estimates
the density for a point x by averaging densities of multiple local
regions covering x. Whilst the local regions could be implemented
in different ways, we focus on deriving the local regions using
nearest neighbours. Because these local regions can be defined by
using a significantly smaller data set than the given data set, the
computational expense for nearest neighbour search is reduced to
such an extent that an indexing scheme becomes unnecessary.

We describe LiNearN in the following five subsections. After
describing the key differences between the new and existing
density estimators in the first subsection, LiNearN is formally
defined in the second subsection with an illustration in the third
subsection. The asymptotic error analysis is given in the fourth
subsection followed by its implementation in the fifth subsection.

3.1. Key differences

The key differences between LiNearN and existing density esti-
mators based on the nearest neighbour are shown in Table 1. Since all
parameters, except n, are constant and both ψ5n and Ψ5n (see
definitions in Section 3.2), the time complexity of LiNearN is O(n),
which is significantly smaller than Oðn2Þ or Oðn log nÞ.

Unlike ε-neighbourhood density estimator which employs a
global ε (where every local region has the same size), LiNearN
adapts the size of each local region to the local data distribution.
For example, sparse regions have large local regions, whereas
dense regions have small local regions. While k-nearest neighbour
density estimator can adapt to local data distributions in simple

Table 1
Key differences between existing nearest neighbour algorithms and LiNearN in terms of methodology and time complexity.

Existing NN LiNearN

Methodology

Single model Multiple models
Density for each xAD is derived from a single local region
via NN searches (e.g., fkNN, f kthNN or f ε)

Density for each xAD is derived from many local regions (LR)

Indexinga is required to speed up NN search. Often rely on
triangle inequality to prune the search space

NN search without indexing
1. NN search in a subset of D (t times) to define LR
2. NN search to make the final estimation for each xAD

Time complexity
LR building Not applicable 1. ψðψþΨ Þt
Index building Nil or n log nb Not applicable
n queries n2 or n log n 2. ψnt

a An alternative to indexing is clustering based search [27] which often needs higher time cost than indexing.
b Without indexing, n queries in existing nearest neighbour algorithms have Oðn2Þ time complexity; with indexing methods such as Cover Trees [9] and M-Trees [12],

n queries have Oðn log nÞ time complexity.
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