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Recognition is the fundamental task of visual cognition, yet how to formalize the general recognition
problem for computer vision remains an open issue. The problem is sometimes reduced to the simplest
case of recognizing matching pairs, often structured to allow for metric constraints. However, visual
recognition is broader than just pair-matching: what we learn and how we learn it has important
implications for effective algorithms. In this review paper, we reconsider the assumption of recognition
as a pair-matching test, and introduce a new formal definition that captures the broader context of the
problem. Through a meta-analysis and an experimental assessment of the top algorithms on popular
data sets, we gain a sense of how often metric properties are violated by recognition algorithms. By
studying these violations, useful insights come to light: we make the case for local distances and systems
that leverage outside information to solve the general recognition problem.
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1. Introduction

Recognition is a term everyone in computer vision and machine
learning understands - or at least we think we do. Despite multiple
decades of research, it may be somewhat surprising to learn that a
very basic question remains unresolved: is recognition metric?
Familiar distance metrics used in computer vision include Euclidean
distance and Mahalanobis distance, both computed in feature space.
Given one of these metrics, the task of recognizing an unknown
object can be approached by finding the class label of its nearest
neighbor under that distance metric in a set of training samples.
Such an approach provides a recognition function, thus some level
of recognition can be accomplished with a metric. However, at a
more fundamental level, we would like to know if distance truly
captures all that is meant by the term recognition, and if metrics are
good approaches to solving complex recognition tasks in computer
vision. In this review paper, we adopt the convention that a problem
is metric if the best solutions to that problem can be achieved by
directly applying a distance metric to compute the answer.

An important observation with implications for recognition is
that in separable metric space, using a distance metric and the
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nearest neighbor (NN) algorithm provides useful consistency. As the
number of i.i.d. samples from the classes approaches infinity, the NN
algorithm will converge to an error rate no worse than twice the
Bayes error rate, i.e. no worse than twice the minimum achievable
error rate given the distribution of the data [3]. To many, this
convergence theorem suggests that recognition can always be
formulated as NN matching with an appropriate distance metric.
However, having to double the error of the optimal algorithm over
the same data often does not lead to a particularly good algorithm.
This becomes apparent when actual error rates are considered
during experimentation.

With the recent popularity of metric learning [4-13] for various
recognition tasks, where a metric is learned over given pairs of
images that are similar or dissimilar, one might infer that recogni-
tion is always a metric process. We note that the NN convergence
theorem [3] is true for any metric - hence any improvements
from the choice of metric, or metric learning, are not about the
asymptotic error, but something else such as the error for finite
samples and/or the rate of convergence. We will show that while
metric learning can produce reasonable results, enforcing metric
properties leaves out information, often limiting the quality of
recognition with finite data. This is consistent with supporting
prior work [14] in pattern recognition that shows increas-
ing discriminative power for non-metric distance measures over
visual data.

If the convergence theorem itself is about recognition, then the
recognition problem is assumed to be formulated in an asymptotic
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Fig. 1. Assumptions are often made about the underlying nature of recognition in
computer vision that do not hold true in practice. A common constraint placed
upon recognition algorithms is that they must be metric, meaning their distance
scores adhere to the properties of non-negativity, identity, symmetry and the
triangle inequality. At first glance, the scores from many recognition algorithms
appear to satisfy these constraints. However, violations can be subtle. For example,
the distance scores produced by the top-performing Tom-vs-Pete algorithm [1] for
these images from LFW [2] violate the triangle inequality.

sense with infinite i.i.d. samples. We argue that visual recognition
does not rely on either of those assumptions, but rather focuses
on maximizing the accuracy for finite, and, unfortunately, oppor-
tunistic and hence potentially biased sampling.

A metric function is defined as follows:

Definition 1 (Distance Metric). A function d : X x X —» R is metric
over a set X if it satisfies four properties for {x,y,z} = X:

1. d(x,y) > 0 (non-negativity).

2. d(x,y) =0 < x =y (identity).

3. d(x,y) =d(y,x) (symmetry).

4, d(x,z) <d(x,y)+d(y,z) (the triangle inequality).

Metric functions have useful properties that allow one to show
that a particular problem can be formulated as a convex mini-
mization problem, or, as we have stated, that various types of
sequences converge in the limit. There are also several cases where
one of the properties is excluded. Functions that do not satisfy the
triangle inequality are called semimetrics, those that violate
symmetry are called quasimetrics, and those missing one or both
halves of the identity requirement are called pseudometrics.!
While the term “distance measure” is sometimes used to mean a
distance metric, it is more appropriate to use this term to mean a
measurement that provides information about dissimilarity, but
may be formally non-metric (our use of the term follows this
convention).

[s it reasonable to assume that a distance metric d maps pairs of
elements from X into R during recognition? When a person
recognizes an object, do they refer to an actual image of the object
of interest? A more likely alternative is a comparison to a stored
model with a more complex internal representation, not a direct
copy of some prior trained input. This view is consistent with
prototype theory [16] in cognitive psychology. Thus, at a structural
level, recognition in this mode takes an input x € X, and a model M,
and hence cannot be metric because it is not even of the proper
functional form. It is possible to build a model using just x, and
then consider the distance between models in a nearest neighbor

1 Note that without the property of identity, the theorem of NN convergence
[3] does not hold. It has also been shown [15] that the optimal distance measure, in
the sense of minimal Bayes risk, always violates the identity property and therefore
is not metric.

fashion. Many instance learning algorithms do just that. However,
for many other commonly used recognition algorithms, one
cannot induce a proper model from a single input.? Thus, the
general problem of recognition cannot be restricted to just metrics,
even though it must include them.

In the core pattern recognition literature, this issue has been
raised specifically in the context of Euclidean distance. Pekalska
et al. [17] observe that “Non-metric dissimilarity measures
may arise in practice, e.g. when objects represented by sensory
measurements or by structural descriptions are compared.”
Experiments to confirm this have included: comparing distance
measures before and after Euclidean transforms are applied
[17,18]; an examination of the parameter space of data for
metricity [14]; and an evaluation of dissimilarity representations
for classification [18-22]. In all cases, an enforcement of Euclidean
constraints does not help classification performance [23], and non-
Euclidean measures are often shown to be better, leading Pe kalska
et al. to conclude “that non-Euclidean and/or non-metric distances
can be informative and useful in statistical learning” [14].

However, even in light of this finding, the research area of
metric learning for computer vision remains quite active. A key
difference from earlier work in metrics for statistical learning is
that recent work in visual learning, with its strong need for data
normalization, eschews Euclidean distance in favor of Mahalanobis
distance [4]. In our review of the literature, we take a broader look
at the many non-Euclidean metric learning approaches that have
been proposed since the above studies were conducted.

Beyond statistical learning, it is natural to ask if the human
mind, a most successful recognition system operates in a way that
satisfies the key metric properties of symmetry and the triangle
inequality. The consensus in the cognitive psychology community
is a definitive “no”. In seminal work, Tversky [24] showed that
human analysis of “similarity” is non-symmetric and is context
dependent. One of the visual experiments conducted by Tversky
was a simple pair-matching task, where subjects were asked if two
block letters were the same or not. A similarity function S(p,q)
indicated the frequency at which subjects noted letter p to be the
same as q. The experiment showed that the order of presenta-
tion of the letters mattered in a statistically significant way:
S(p,q) # S(q,p). This result, along with others for matching faces,
abstract symbols, and the names of countries led Tversky to
conclude that “similarity is not necessarily a symmetric relation.”

In the subsequent work, Tversky and Gati [25] examined if the
triangle inequality (Fig. 1) is satisfied by humans when assessing
similarity. Because the triangle inequality can always be satisfied by
adding a large constant to the distances between individual points
when measuring dissimilarity on an ordinal scale, Tversky and Gati
proposed a test that assumes segmental additivity: d(x,z)=d
(x,y)+d(y,z). Over numerous pair-matching trials across stimuli,
human similarity judgments were found to violate the triangle
inequality in a statistically significant manner. Even without the
triangle inequality for additive functions, it is still possible to induce
metric models with subadditive metrics. However, in experiments
where subjects provided subjective probability estimates instead of
ordinal numbers, Tversky and Koehler [26] were only able to show
that the reported scores are often, but not always, subadditive.

Linking these findings back to pattern recognition, Duin [28,29]
finds a similar effect for the problem of judging difference between
real world objects, and highlights the need for a reconsideration of

2 For example, consider support vector machines (SVM): one cannot draw a
conceptual decision boundary without both positive and negative samples.

3 It is possible to work around the constraint of segmental additivity using a
subadditive metric based on Shepard's universal law of generalization to induce a
metric from finite sets of data [27], but the result is still not consistent with the
human perception findings of Tversky and Koehler [26].
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