

Available online at www.sciencedirect.com

Catalysis Communications 7 (2006) 228-231

www.elsevier.com/locate/catcom

Effect of calcination temperature on the catalytic activity of copper supported on γ -alumina for the water-gas-shift reaction

Hidenori Yahiro *, Kenta Nakaya, Tetsuya Yamamoto, Kazuhiko Saiki, Hiroyuki Yamaura

Department of Applied Chemistry, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Ehime, Matsuyama 790-8577, Japan

Received 11 September 2005; received in revised form 3 November 2005; accepted 4 November 2005 Available online 27 December 2005

Abstract

The effect of calcination temperature on the catalytic activity for water-gas-shift (WGS) reaction was investigated for copper/alumina catalysts prepared by the impregnation method. The catalyst calcined at 1073 K, followed by the treatment in H_2 at 523 K, showed a high activity for WGS reaction. XRD and H_2 -TPR measurements revealed that the catalyst calcined at 1073 K contained both highly dispersed CuO and spinel $CuAl_2O_4$ particles. The former species was reduced by the treatment in H_2 at 523 K to yield the highly dispersed metallic copper which would act as catalytically active sites in WGS reaction.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Water-gas-shift reaction; Carbon monoxide; Alumina; Supported catalyst; Metallic copper; Spinel; CuAl₂O₄

1. Introduction

Removal of carbon monoxide (CO) in the hydrogen fuel produced by reforming of hydrocarbon sources is indispensable to attain a high and stable performance of polymer electrolyte fuel cells (PEFCs) operated at low temperature because CO is irreversibly adsorbed on the platinum electrode of a PEFC. The water-gas-shift (WGS) reaction, $H_2O + CO = H_2 + CO_2$, has been used in industry to achieve the removal of CO in the relatively high concentration range (ca. 7–10% CO). The most promising catalyst for the WGS reaction is Cu/ZnO-based mixed oxide prepared by the coprecipitation method [1–5]. Supported copper catalysts have been also reported to be active for the WGS reaction [6–9].

It is well-known that the catalytically active site in WGS reaction is metallic copper (Cu^0). Therefore, the formation of highly dispersed Cu^0 particles would result in an enhancement of the catalytic activity. In the present paper, we wish to report that the Cu/Al_2O_3 catalyst calcined at

1073 K, giving highly dispersed Cu⁰ particles on alumina supports, showed a high activity in the WGS reaction.

2. Experimental methods

The γ -alumina used as a support material was supplied from Catalysis Society of Japan (JRC-ALO-8). Cu/Al₂O₃ catalysts were prepared by a conventional impregnation method using an aqueous solution of Cu(NO₃)₂ · 3H₂O (Wako Chem., 99.9%). The catalysts were dried at 383 K for 24 h and calcined at 773–1173 K for 8 h in air. The loading of Cu was unified to be 12 wt%.

The WGS reaction was carried out in a fixed-bed continuous flow reactor at 473–523 K. Prior to the activity test, the catalyst was reduced by flowing 20 vol% H_2/He gas at a flow rate of 30 cm³ min⁻¹ at 523 K. The reactant gases contained 5.4 vol% of CO, 21.6 vol% of H_2 O, 57.0 vol% of H_2 , and 16.0 vol% of H_2 O. The total flow rate was 30 cm³ min⁻¹ and the volume of the catalyst bed was 1.8 cm³ (gas hourly space velocity = $6000 \, h^{-1}$). The effluents were analyzed by on-line gas chromatography (Shimazu, GC-8AIT) using an active carbon column.

X-ray powder diffraction (XRD) analysis was performed to determine the crystalline phase of the catalysts using a

^{*} Corresponding author. Tel.: +81 89 927 9929; fax: +81 89 927 9946. E-mail address: hyahiro@eng.ehime-u.ac.jp (H. Yahiro).

Rigaku RINT2200HF diffractometer with CuKα radiation. Temperature-programmed reduction was carried out by flowing 5 vol\% H₂/Ar (30 cm³ min⁻¹) in the temperature range 373–773 K (H₂-TPR). The sample temperature increased with a rate of 2 K min⁻¹ and the amount of H₂ consumed was measured by a thermal conductivity detector of the gas chromatograph (Shimazu, GC-8AIT). The surface area of catalyst was measured by the BET method using N₂ adsorption. The surface area of the Cu⁰ particles formed on the catalysts was measured by a N₂O-pulse titration method $(N_2O + 2Cu \rightarrow Cu_2O + N_2)$ at 373 K [10,11]. Catalysts were reduced with 20 vol% H₂/He at 523 K for 1 h prior to the injection of the N₂O pulse. The surface area of Cu⁰ particles was calculated by assuming that a reduced Cu^0 surface has a surface density of $1.46 \times$ 10^{19} copper atoms m⁻² [10,11].

3. Results and discussion

The catalytic activities of Cu/Al₂O₃ catalysts are shown in Fig. 1 as a function of calcination temperature. The catalysts were reduced by H₂ at 523 K before the WGS reaction. The conversion of CO gradually increased with increasing calcination temperature, reached a maximum value at 1073 K, and then drastically decreased at 1173 K. This temperature-dependence was clearly different from that of a commercially available Cu/ZnO/Al₂O₃ mixed oxide catalyst, for which the activity decreased monotonously with increasing calcination temperature [3,12]. The BET surface area and the bulk density of the catalysts calcined at 773-1173 K are summarized in Table 1. The BET surface area of the Cu/Al₂O₃ catalysts gradually decreased with an increase in calcination temperature while the bulk density increased. The significant change in both BET surface area and bulk density of the catalyst calcined at 1173 K was due to the formation of spinel oxide as described later. The catalyst calcined at 1073 K showed a high activity in spite of the lower BET surface area than those for the catalysts calcined at 773 and 973 K.

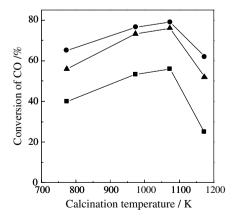


Fig. 1. Conversions of CO at (\blacksquare) 473, (\blacktriangle) 498, and (\bullet) 523 K, as a function of calcination temperature. Reaction conditions: 5.4 vol% of CO, 21.6 vol% of H₂O, 57.0 vol% of H₂, and 16.0 vol% of CO₂, total flow rate 30 cm³ min⁻¹, and gas hourly space velocity 6000 h⁻¹.

Table 1
BET surface area and bulk density of catalysts calcined at each temperature

	Calcination temperature/K			
	773	973	1073	1173
Surface area/m ² g ⁻¹ Bulk density/g cm ⁻³	163 0.739	137 0.741	115 0.749	18 0.918

The catalytic activity of the catalyst calcined at 1073 K was compared with that of the well-known oxide catalyst, CuO/ZnO/Al₂O₃, with the weight ratio 43:49:8. Under the present conditions, the catalytic activities of the oxide catalyst were 66%, 86%, and 88% at 473, 498, and 523 K, respectively. The activity of the catalyst calcined at 1073 K was slightly lower than that of the oxide catalyst; however, considering that the copper content of the latter catalyst was ca. 3 times larger than that of the former catalyst, the activity per copper in the catalyst calcined at 1073 K was higher than that in the oxide catalyst.

XRD patterns of the catalysts calcined at 773-1173 K are illustrated in Fig. 2A. The catalysts calcined below

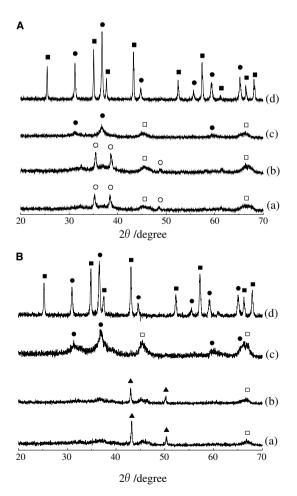


Fig. 2. Powder X-ray diffraction patterns of catalysts calcined at (a) 773, (b) 973, (c) 1073, and (d) 1173 K, (A) before and (B) after the treatment with H_2 at 523 K: (\square) γ -Al₂O₃, (\blacksquare) α -Al₂O₃, (\bigcirc) CuO, (\blacktriangle) Cu⁰, and (\bullet) CuAl₂O₄.

Download English Version:

https://daneshyari.com/en/article/53050

Download Persian Version:

https://daneshyari.com/article/53050

<u>Daneshyari.com</u>