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Locality preserving projection (LPP) is a manifold learning method widely used in pattern recognition
and computer vision. The face recognition application of LPP is known to suffer from a number of
problems including the small sample size (SSS) problem, the fact that it might produce statistically
identical transform results for neighboring samples, and that its classification performance seems to be
heavily influenced by its parameters. In this paper, we propose three novel solution schemes for LPP.
Experimental results also show that the proposed LPP solution scheme is able to classify much more
accurately than conventional LPP and to obtain a classification performance that is only little influenced
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by the definition of neighbor samples.
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1. Introduction

Locality preserving projection (LPP) is a manifold learning
method [1-7] widely used in pattern recognition and computer
vision. LPP is also well-known as a linear graph embedding
method [8,9]. When LPP transforms different samples into new
representations using the same linear transform, it tries to
preserve the local structure of the samples, i.e., the neighbor
relationship between samples [10-15] so that samples that were
originally in close proximity in the original space remain so in the
new space. We note that the original LPP method was unsuper-
vised and was proposed for only vector samples, not being able to
be directly applied to image samples. Here ‘unsupervised’ means
that when producing the transforming axis the original LPP
method does not exploit the class-label information. Hereafter
this method is referred to as conventional LPP.

There have been several types of improvements to conventional
LPP. The first type of improvement is supervised LPP [16-19],
which seeks to improve the performance of LPP in recognition
problems by exploiting the class-label information of samples in
the training phase. The main difference between unsupervised
LPP and supervised LPP is that unsupervised LPP uses only the
distance metric between samples to determines ‘neighbor
samples’ whereas supervised LPP uses both the distance metric
and the class label of samples to determine ‘neighbor samples’.
Supervised LPP does not regard two samples from two different
classes are ‘neighbors’ even if they are in close proximity to each
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other. Since the weight matrix is determined on the basis of
neighbor relationship between samples, having different weight
matrices is also one of the main differences between supervised
LPP and unsupervised LPP. It is usually thought that supervised
LPP can outperform unsupervised LPP in classification applica-
tions owing to the use of the class-label information. Local
discriminant embedding (LDE) [20] and marginal Fisher analysis
(MFA) [21] can also be viewed as supervised LPP methods. This is
because their training phases both exploit the class-label
information of samples. They are derived by using a motivation
partially similar to LPP and each of them is based on an eigen-
equation formally similar to the eigen-equation of LPP. On the
other hand, since LDE and MFA partially borrow the idea of
discriminant analysis and try to produce satisfactory linear
separability, their ideas are also somewhat different from the
idea of preserving the local structure of LPP. LDE and MFA can be
viewed as two combinations of the locality preserving technique
and the linear discriminant analysis. The two methods probably
perform worse than the conventional supervised LPP in preser-
ving the local structure.

The second type of improvement changes conventional LPP to
a nonlinear transform method by using the kernel trick [19-24].
This type of improvement transforms a sample into a linear
combination of a number of kernel functions each being
determined by this sample and one training sample. The method
uses the same linear combination coefficients to transform each
sample into the new representation. Because the kernel function
is nonlinearly related to the sample, the transform mapping is
nonlinear. The third type of improvement to conventional LPP
mainly focuses on directly implementing LPP for two-dimensional
rather than one-dimensional vectors. This allows LPP to have a
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higher computational efficiency. This type of improvement has
been referred to as two-dimensional locality preserving projec-
tion (2DLPP) [25,26]. The fourth type of improvement to
conventional LPP seeks to obtain LPP solutions with different
solution properties. Examples of this type of improvement include
orthogonal locality preserving method [27], uncorrelated LPP
feature extraction method [28], the fast implementation algo-
rithm for unsupervised orthogonal LPP [29], and the LPP
algorithm for the SSS problem [30].

Different improvements to conventional LPP can also be
regarded as implementations of the idea of locality preserving
projection under different constraint conditions or in different
cases. For example, unsupervised LPP requires all the samples to
preserve their local neighbor relationship, whereas supervised
LPP requires only samples from the same class to preserve their
neighbor relationship. As conventional LPP was devised for vector
data, its implementation on an image-based application requires
that the image be converted into a vector in advance. However,
2DLPP is devised for image matrices, which means that 2DLPP
directly applies the idea of locality preserving projection to image
matrices rather than the vector corresponding to the image.
Recently it has been demonstrated that LPP is theoretically related
and formally similar to other linear dimensionality reduction
methods and the main difference between LPP and them is in the
weight matrix. Indeed, many popular linear dimensionality
reduction methods including unsupervised LPP, supervised LPP,
linear discriminant analysis (LDA), MFA, LDE and neighborhood
preserving embedding (NPE) can be described as the implemen-
tations of the linear graph embedding framework with different
weight matrices [31]. Conventional LPP and its improvements
have been used in face recognition, image retrieval, document
analysis, data clustering, etc. [11,16-18,32,33].

As in image-based applications, conventional LPP should first
convert the image into the vector and as conventional LPP obtains
the transforming axes by solving the minimum or maximum
eigenvalue solution of a generalized eigen-equation, conventional
LPP usually suffers from several problems. The first problem is
that the dimensionality of the sample is usually larger than the
number of the samples and the generalized eigen-equation
cannot be directly solved due to the matrix singularity problem.
This problem is also referred to as the small sample size (SSS)
problem. An image-based recognition problem such as face
recognition is usually a SSS problem. On the other hand, image-
based recognition covers a wide range of pattern recognition
problems. Thus, the study of how to properly apply LPP to the SSS
problem is crucial. To the best of our knowledge, no satisfactory
approach to this study has been proposed. Most of previous LPP-
based image recognition applications avoid the SSS problem. For
example, a number of face recognition applications of conven-
tional LPP first reduce the size of the face image and then
implement the conventional LPP algorithm for the resized images.
In order to make the conventional LPP algorithm workable, the
dimensionality of the vector of the resized image should be
smaller than the number of the training samples. Consequently, in
order to avoid the SSS problem, the original image usually should
be resized into a very small size. This will cause a large quantity of
image information loss. Another example of avoiding the SSS
problem is to first reduce the dimensionality of the sample by
performing principal component analysis and then to carry out
the conventional LPP algorithm [23]. But there are no guidelines
for how to use principal component analysis to transform the
sample into a proper dimensionality. If the extent of reduction is
too great, there will be considerable information loss. On the
other hand, if the dimension reduction extent is small, the
corresponding eigen-equation is still singular and cannot be
solved directly.

A further drawback of conventional LPP is that if it is
implemented by solving the minimum eigenvalue problem, the
minimum eigenvalue solution is not always optimal for preser-
ving the local structure. There are two reasons for this. The first is
that if there are zero eigenvalues, conventional LPP will take as
transforming axes the eigenvectors corresponding to the zero-
eigenvalues of the generalized eigen-equation. As a result, after
conventional LPP transforms samples into a new space using
these transforming axes, a sample statistically will have the same
representation as its neighbors, which will be formally demon-
strated in Section 2. This is not how locality preserving projection
works. The goal of LPP is not to make samples have the same
representation but is to preserve the neighbor relationships
between samples. The second reason is that the classifier cannot
correctly classify samples when conventional LPP is implemented
in the unsupervised case, since two neighbor samples from two
different classes might have the same representation in the new
space.

We also note that when implementing a LPP solution scheme,
we should define a specific number of neighbor samples for each
particular sample. In practice, it is not known how different values
of this number influence the classification performance.

In this paper, we propose three new solution schemes for LPP.
These new schemes have three advantages. The first is that they
can be directly implemented no matter whether there exists the
SSS problem or not. The second is that they are consistent with
the goal of LPP and have a clear justification. The third advantage
is that experimental results show that these schemes are more
accurate than conventional LPP. This paper also conducts experi-
ments to show the effect on classification performance of the
number of neighbor samples and the value of the parameter k of
k-nearest-neighbor classifiers (KNNC). The experimental results
show that the improved LPP solution scheme 3 is not only
computationally efficient, but also classifies much more accu-
rately than conventional LPP. It is also a well-behaved LPP
solution scheme whose classification accuracy is little influenced
by the definition of neighbor samples.

The remainder of the paper is organized as follows. In Section 2
we introduce the algorithm of conventional LPP and analyze its
characteristics. In Section 3 we present our LPP solution schemes
and show their characteristics. In Section 4 we describe the
experimental results. Section 5 offers our Conclusion.

2. Description of LPP

LPP was proposed as a way to transform samples into a new
space and to ensure that samples that were in close proximity in
the original space remain so in the new space. The goal of LPP is to
minimize the following function:

1
iZ(yi_Yj)zwij- (1
ij

where y;, yj are transform results of vector samples X;, X;, and wj; is
the weight coefficient. y; is obtained by using a transforming axis
z. That is, we have y; :xiTz and y; :ijz. The function defined in
Eq. (1) can be rewritten as
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By defining a matrix Wand a dialog matrix D as (W); =wj;,
(D); = >_;w;; we can transform (2) into
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