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a b s t r a c t

Multi-label feature selection involves selecting important features frommulti-label data sets. This can be
achieved by ranking features based on their importance and then selecting the top-ranked features.
Many multi-label feature selection methods for finding a feature subset that can improve multi-label
learning accuracy have been proposed. In contrast, computationally efficient multi-label feature
selection methods have not been studied extensively. In this study, we propose a fast multi-label
feature selection method based on information-theoretic feature ranking. Experimental results demon-
strate that the proposed method generates a feature subset significantly faster than several other multi-
label feature selection methods for large multi-label data sets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label feature selection is useful for reducing the compu-
tational burden of learning, while maintaining or possibly improv-
ing accuracy. It has been used widely in application areas such as
music emotion recognition, gene function classification, semantic
image annotation, and text categorization [25,26,19,3,7,31]. Let
W �Rd denote input data constructed from a set of features F,
where jF j ¼ d and patterns drawn from W are assigned to a joint
state of multiple labels L¼ fl1;…; ltg, where j Lj ¼ t. Multi-label
feature selection can be achieved through a ranking process of
assessing the importance of d features based on a score function
and selecting the top-ranked n features from F (n{d).

Several researchers have dedicated their efforts to selecting
important features for multi-label learning [4,8,10,15,21,28].
Multi-label feature selection methods can be categorized into
three types, wrapper, embedded, and filter approaches, according
to how they assess the importance of candidate feature subsets.
Wrapper-based multi-label feature selection methods assess the
importance of feature subsets based on the accuracy of multi-label
learning algorithm [35]. Some multi-label learning algorithms
have a feature selection process embedded in their learning
process [10,13,23]. In contrast, filter-based multi-label feature
selection methods find a feature subset by focusing on the
characteristics of candidate feature subsets and multiple labels

[15,16,18,29]. Although multi-label problems can be solved in a
simpler manner by assuming that labels are independent to each
other [17,29], label dependency is considered to be a key factor in
determining a better feature subset [6,20,38]. Because multi-label
feature selection can boost the efficacy of label dependency by
discarding noisy features, it is regarded as an effective method for
multi-label learning [16,18,35]. To consider label dependency, an
algorithm must examine various label combinations from input
labels [36]. Therefore, considering label dependency can be com-
putationally prohibitive when the number of input labels is large.
However, most multi-label feature selection methods focus on
improving multi-label learning accuracy solely; and hence,
research on fast multi-label feature selection is still lacking.

In this paper, we propose a multi-label feature selection
method with a concern for computational efficiency. To demon-
strate the efficiency issue of multi-label feature selection theore-
tically, we derive a score function based on information theory for
assessing the importance of each feature [5,12,27] and then
analyze it in terms of computational cost. A derived score function
indicates that significant computational cost will be expended to
calculate the entropy involved in the interaction of information
terms. To circumvent this efficiency issue, we propose an efficient
feature ranking method based on three components:

� Relaxing the derived score function by constraining the max-
imum size of label combinations to be considered.

� Discarding unnecessary entropy calculations for feature rank-
ing and reusing pre-calculated entropy terms.

� Identifying promising labels for considering label dependency.
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Thus, the contribution of this work can be summarized as
follows:

� A computationally efficient score function for the multi-label
feature selection problem is proposed. This function is obtained
by discarding unnecessary or ineffective entropy calculations
from the score function of Lee and Kim [18].

� The proposed score function considers promising label combi-
nations based on the information-theoretic perspective, while
the score function in the previous study considers all the label-
pairs, irrespective of the expense.

� The actual benefit provided by each component is shown by a
mathematical analysis based on the computational cost for
entropy calculation. The previous study does not present such
an analysis.

Experimental results indicate that the proposed method out-
puts a feature subset significantly faster than other multi-label
feature selection methods for large multi-label data sets.

2. Proposed method

In this section, we propose our multi-label feature selection
method based on efficient feature ranking. First, the score function
is derived from Shannon's mutual information (MI) [27] between a
feature and labels. To circumvent examining all possible combina-
tions of labels, the derived score function is relaxed in Section 2.1.
Second, to make the score function computationally less expen-
sive, methods of avoiding unnecessary and redundant calculations
for entropy terms are introduced in Sections 2.2 and 2.3, respec-
tively. Third, to reduce computational cost for considering label
combinations, a strategy for identifying promising labels is pro-
posed in Section 2.4. An algorithmic sketch of the proposed
method is presented in Section 2.5.

2.1. Deriving score function

To perform multi-label feature selection, an algorithm must be
able to measure the dependency (importance score) between each
feature and multiple labels. The dependency between a feature f
and labels L can be measured using MI.

Mðf ; LÞ ¼Hðf Þ�Hðf ; LÞþHðLÞ ð1Þ
where Hð�Þ of Eq. (1) represents a joint entropy that measures the
extent of self-information carried by multiple variables, defined as

HðXÞ ¼ �
X

PðXÞlog PðXÞ ð2Þ

where Pð�Þ is a probability mass function of a given set of variables
X. Let S be a set of n features, S0 a power set of S without fϕg, and X
a possible element of S0p ¼ fejeAS0; jej ¼ pg. Because Eq. (1) suffers
from estimating high-dimensional joint entropy, when j Lj is large,
it can be rewritten using the work of Lee and Kim [18]:

MðS; LÞ ¼
Xj Lj þn

k ¼ 2

Xk�1

p ¼ 1

ð�1ÞkVkðS0p � L0k�pÞ ð3Þ

where � denotes the Cartesian products of two sets of variables,
and Vkð�Þ is defined as

VkðS0Þ ¼
X
XAS0k

IðXÞ ð4Þ

where I(X) is the interaction information (refer it to interaction in
this paper) for a given variable set X [2,5,12], defined as

IðXÞ ¼ �
X
YAX 0

ð�1Þj Y jHðYÞ ð5Þ

where X0 is a power set of Xwithout fϕg. It should be noted that MI
takes into consideration the shared information between S and L,
but it ignores the information that lies within S or L; however,
interaction information considers the shared information of all the
involved variables [18].

Eq. (3) was derived to consider dependencies among multiple
features and multiple labels. In contrast, Eq. (1) considers depen-
dency between a feature and multiple labels because of computa-
tional efficiency, hence Eq. (3) can be further simplified. Because S
is f from Eq. (1), and S0p of Eq. (3) represents a set of possible
subsets of S with p cardinality, there is no element in S0p, when
p41. Therefore, n and p in Eq. (3) are fixed to one. As a result, Eq.
(3) is simplified to

MðS; LÞ ¼Mðf ; LÞ ¼
Xj Lj þ1

k ¼ 2

ð�1ÞkVkðf 01 � L0k�1Þ ð6Þ

Because X0
1 ¼ X, where jX j ¼ 1, f 01 in Eq. (6) can be simplified to

f, whereby we get Eq. (7) as follows:

Mðf ; LÞ ¼
Xj Lj þ1

k ¼ 2

ð�1ÞkVkðf � L0k�1Þ ð7Þ

Eq. (7) indicates that Mðf ; LÞ can be separated into interaction
terms involving a feature and all possible label combinations. For
example, MI between f and L¼ fl1; l2; l3g can be rewritten as

Mðf ; LÞ ¼ Iðf ; l1Þþ Iðf ; l2Þþ Iðf ; l3Þ� Iðf ; l1; l2Þ
� Iðf ; l1; l3Þ� Iðf ; l2; l3Þþ Iðf ; l1; l2; l3Þ

Eq. (7) also indicates that the number of interaction terms
increases exponentially with the size of labels. To circumvent
prohibitive computations, we relax the score function by con-
straining j Lj of (7) to b. This allows the score function to consider
label combinations with a maximum b cardinality:

Mbðf ; LÞ ¼
Xbþ1

k ¼ 2

ð�1ÞkVkðf � L0k�1Þ ð8Þ

For example, if we set b to one, then Eq. (8) can be written as

M1ðf ; LÞ ¼
X2
k ¼ 2

ð�1ÞkVkðf � L0k�1Þ ¼ V2ðf � L01Þ ¼
X
li A L

Iðf ; liÞ

As a result, the score function will not consider dependency
between a feature and label combinations. To circumvent this, b
can be set to two to consider dependency between a feature and
label-pairs:

M2ðf ; LÞ ¼
X3
k ¼ 2

ð�1ÞkVkðf � L0k�1Þ ¼ V2ðf � L01Þ�V3ðf � L02Þ

¼
X
li A L

Iðf ; liÞ�
X
li ;lj AL

Iðf ; li; ljÞ

where lia lj. These examples show that the computational cost is
relaxed according to b. Because the calculation of interaction terms
is performed by obtaining entropy terms involved in interaction
terms, we analyzed Eq. (8) in terms of the computational cost of
the entropy calculation. Let k be the number of variables involved
in an entropy term. The number of patterns is a constant value,
and hence, the computational cost for calculating an entropy term
will increase linearly according to k; the number of values to be
examined for calculating entropy is jW j � k, where jW j is the
number of patterns in a given data set. For simplicity, we assume a
computational cost of H(X), where jX j ¼ k is k unit cost, with one
unit cost being the computational cost to calculate an entropy
term involving one variable. Assuming that an algorithm assesses
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