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a b s t r a c t

Radon transform has been acknowledged as the promising solution for image processing due to its high
noise robustness and the ability of converting the rotation, scaling and translation operations on a
pattern image into translations and scaling in the Radon image. Recently, several transforms widely
employed in signal processing have been introduced in images' Radon space for pattern recognition.
However, moments and especially moment invariants in the Radon space have not been thoroughly
investigated. In this paper, we introduce a mathematical framework of constructing moments and
moment invariants in the Radon space. First, rotational moments which represent non-orthogonal
moments and Legendre–Fourier moments which represent orthogonal moments are introduced in the
Radon space respectively. On this basis, we propose a method to obtain rotation, scaling and translation
as well as affine invariance of these moments in the Radon space. Second, we prove that the proposed
moments in the Radon space can be represented by a linear combination of classical geometric
moments. With this property, the implementation time of the moments in the Radon space can be
significantly reduced, and the recognition accuracy can also be greatly improved since no numerical
approximation is involved. Theoretical and experimental analysis on invariant recognition accuracy,
noise robustness, image blur distortion and computational time also shows the superiority of the
proposed methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recognition of objects when subjected by various geometric
distortions in noisy and cluttered environments is an important
challenge in pattern recognition and computer vision. Invariant
feature extraction is the most popular method to this problem
[1,2]. While moments are scalar quantities used to characterize a
function and to capture its significant feature, in the past few years,
the use of moments and moment invariants has received a wide
range of attention in invariant image recognition [3]. As illustrated in
Flusser et al. [3], the moment methods can be categorized into non-
orthogonal and orthogonal families. The family of non-orthogonal
moments mainly includes geometric moments, complex moments
and radial moments (or rotational moments) [4]. The family of
orthogonal moments mainly includes Zernike moments [5], ortho-
gonal Fourier–Mellin moments [6], pseudo-Zernike moments [7],
Bessel–Fourier moments [8], Legendre [9], Gaussian–Hermite [10],
Tchebichef [11], Krawtchouk [12], and Hahn moments [13]. Based on
these moments, various moment invariants have been proposed. Hu
[14] first derived seven moment invariants constructed on geometric
moments to achieve rotation, scale and translation (RST) invariance.

By correcting the fundamental theorem of moment invariants,
Flusser and Suk [15] introduced a new set of moment invariants to
images under affine transform. Correspondingly, Ghorbel et al. [16]
developed a method to derive RST moment invariants from complex
moments. Reddi [17] provided a framework for deriving RST moment
invariants constructed on radial and angular moments. Moreover,
moment invariants based on orthogonal moments have also been
introduced. Chong et al. discussed the translation invariance of
Zernike moments [18], the scale invariance of pseudo-Zernike
moments [19] as well as the scale and translation invariance of
Legendre moments [20] respectively. Based on the same theory, Zhu
et al. [21] derived the translation and scale invariance of discrete
Tchebichef moments. Recently, the RST invariance of orthogonal
Fourier–Mellin moments [22], Gaussian–Hermite moments [23]
and radial discrete Tchebichef moments [24] are deeply discussed.

In recent years, various transforms are employed after image's
Radon transform for RST invariant image recognition. Jafari et al.
[25,26] introduced wavelet transform in the Radon space for
rotation invariant texture retrieval and proved that the signal-to-
noise ratio (SNR) has increased by 1:7NR after the Radon transform
(where NR is the image size). Tabbone et al. [27] provided an
integral function and the discrete Fourier transform on the radial
and angular coordinates of the Radon image respectively to get
RST invariance. Wang and Xiao developed the 2D Fourier–Mellin
transform in the Radon space for rotation and scaling invariant
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image recognition [28]. Inspired by the same theory, Hoang and
Tabbone [29] applied 1D Mellin and discrete Fourier transforms on
the radial and angular coordinates of the Radon image respectively
to achieve RST invariance.

The pioneer work of estimation moments in the Radon space was
represented by Hiriyannaiah and Ramakrishnan [40], who obtained
general and orthogonal moments from the Radon transform data as
well as established the relationship between the regular moments
from Radon projection data and the geometric moments. The first
attempt to find RST invariance from moment patterns in the Radon
space was investigated by Galigekere et al. [30]. They introduced
geometric moment along r-axis of the Radon image for scale and
translation invariant image recognition, but the rotation invariance is
achieved by estimating the rotated angle with time consuming circular
correlation methods. Zhu et al. [31] presented a watermarking scheme
that can resist RST transform attack by the complex moments from
images Radon projection. However, all the methods mentioned above
are built on the same framework. The Radon transform is performed
first, and various transforms followed. Therefore, the implementation
of these methods is extremely time consuming since four or more
tuple integrals are involved. Moreover, another drawback in the
aforementioned methods is the discretization error and numerical
approximation error, which accumulates as the order of the trans-
forms (followed by the Radon transform) increases. It limits the
accuracy of the recognition.

In this paper, we propose a framework for constructing
moments and moment invariants in the Radon space. Based on
this framework, we introduce two types of moment methods
named rotational moments and Legendre–Fourier moments in
image's Radon space for image analysis and invariant image
recognition. To the best of our knowledge, it is the first time to
demonstrate these two moments in the Radon space that can be
represented by a linear combination of geometric moments with-
out variable θ. Therefore, it makes the calculation of the proposed
methods very simple and efficient by reducing the tuple of
integrals from four to two. Moreover, thanks to the exact compu-
tation of geometric moment method, the numerical approxima-
tion errors involved in the proposed methods can be eliminated to
increase the recognition accuracy. In addition, the affine invariant
of the proposed methods can also be achieved by replacing the
geometric moment with affine moment invariants.

The rest of this paper is organized as follows. In Section 2, we
briefly review the definitions of Radon transform, geometric
moments and exact geometric moments to build up fundamental
mathematical background. The definition and RST invariance of
rotational moments in the Radon space are introduced in Section 3.
The relationship between rotational moments in the Radon space
and geometric moment is also given in this section. The same
properties of Legendre–Fourier moments in Radon space are dis-
cussed in Section 4. Section 5 introduces the affine invariance of
rotational moments and Legendre–Fourier moments in Radon
space. Experimental results and analysis are described in Section 6,
and conclusions are presented in Section 7.

2. Some basic definitions

This section provides a brief review of the definitions of Radon
transform, geometric moments and fast and exact geometric
moments. All of these definitions will be used later in this paper.

2.1. Radon transform

Let f ðx; yÞ be an image function, the Radon transform of f ðx; yÞ
can be defined as follows [41]:

Rðr;θÞ ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞ � δðr�x cos θ�y sin θÞ dx dy ð1Þ

where δf�g denotes the Dirac delta function, r is the perpendicular
distance of a straight line from the origin, and θ is the angle
between the distance vector and the x-axis, i.e., θA ½0;πÞ.

2.2. Fast and exact geometric moments

The pþq order geometric moments of image f ðx; yÞ are defined
as

Mp;q ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞxpyq dx dy ð2Þ

To avoid the numerical approximation errors involved in the
computation of geometric moments, Hosny [32] introduced the
exact 2D geometric moments that are defined as follows:

Mp;q ¼
XM
i ¼ 1

XN
j ¼ 1

hp;qðxi; yjÞf ðxi; yjÞ ð3Þ

where M,N is the image size, the kernel function hp;qðxi; yjÞ can be
written as

hp;qðx; yÞ ¼
Z xi þΔxi=2

xi �Δxi=2

Z yi þΔyi=2

yi �Δyi=2
xpyq dx dy

¼ 1
pþ1

xpþ1
����
xi �Δxi=2

xi þΔxi=2
� 1
pþ1

yqþ1
����
yi �Δyi=2

yi þΔyi=2

¼ 1
pþ1

ð�1þ iΔxiÞpþ1�ð�1þði�1ÞΔxiÞpþ1
� �

� 1
qþ1

ð�1þ jΔyjÞqþ1�ð�1þðj�1ÞΔyjÞqþ1
� �

ð4Þ

In the above equation, the intervals Δxi and Δyi are fixed at
constant values Δxi ¼ 2=M and Δyi ¼ 2=N respectively.

Similar to the method of Fourier transform, the time complex-
ity of 2D ðpþqÞ-order geometric moments can be significantly
reduced by successive computation of the 1D q-order moments for
each row:

Mp;q ¼
XM
i ¼ 1

1
pþ1

ð�1þ iΔxiÞpþ1�ð�1þði�1ÞΔxiÞpþ1
� �

Yi;q ð5Þ

where

Yi;q ¼
XN
j ¼ 1

1
qþ1

ð�1þ jΔyjÞqþ1�ð�1þðj�1ÞΔyjÞqþ1
� �

f ðxi; yjÞ ð6Þ

3. Rotational moments in the Radon space

3.1. The definition of rotational moments in the Radon space

The Fourier–Mellin and Radon transform by applying 2D Four-
ier–Mellin transform in image's Radon space ðr;θÞ is defined as
follows [28]:

Ds;m ¼
Z 1

0

Z 2π

0
Rðr;θÞrσ� ju�1e� jmθ dr dθ ð7Þ

where j¼
ffiffiffiffiffiffiffiffi
�1

p
, Rðr;θÞ is the Radon transform of image function

f ðx; yÞ and m¼ 0; 71; 72;… is the circular harmonic order.
According to the definition, the order of Mellin transform
s¼ σ� ju (uAR) is a complex value with σ being a fixed and
strictly positive real constant. Let u¼0 and σ be a non-negative
integer, thus, we can define the rotational moments also called
radial moments in the Radon space (RMRs) as

Fn;m ¼
Z 1

0

Z 2π

0
Rðr;θÞrne� jmθ dr dθ

¼
Z 1

0

Z 2π

0

Z þ1

�1

Z þ1

�1
f ðx; yÞ � δðr�x cos θ
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