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a b s t r a c t

This paper deals with the point symmetry-based clustering task that consists in retrieving – from a data
set – clusters having a point symmetric shape. Prototype-based algorithms are considered and a non-
trivial generalization to kernel methods is proposed, thanks to the geometric properties satisfied by the
point symmetry distances proposed until now. The proposed kernelized framework offers new
opportunities to deal with non-Euclidean symmetries and to reconsider any intractable examples by
means of implicit feature spaces.

A deep experimental study is proposed that brings out, on artificial data sets, the capabilities and the
limits of the current point symmetry-based clustering methods. It reveals that kernel methods are quite
capable of stretching the current limits for the considered task and encourages new research on the
kernel selection issue in order to design a fully unsupervised symmetric pattern recognition process.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a well-known task in data mining and pattern
recognition that consists in organizing a set of objects into groups
(or clusters) in such a way that similar objects belong to the same
cluster and dissimilar objects belong to different clusters. Origin-
ally, clustering was used in the data analysis process to build
summaries (or typologies) from data sets, usually stored in single
tables (objects� features). It gave rise to intensive research during the
last decades by studying numerous strategies to define and/or to reach
good clustering solutions: model-based clustering, partitioning meth-
ods, hierarchical algorithms, density-based or graph-based approaches
to name but a few [1–3]. Then, with the development of the digital
technologies, the application domains and the diversity of the data
types have increased, making data clustering a challenging task. At the
same time, the requirements on the emerging solutions have grown in
such a way that the metrics, the models and/or the algorithms usually
employed have to be redesigned in order to take into account the
user's or domain's expectations. For example, when clustering is used
to control the topology of a sensor network by organizing the sensor
nodes, the efficiency of the network needs to build clusters with either
balanced [4] or unbalanced [5] sizes; organizing a set of genes
according to their metabolic functions naturally requires considering
overlapping clusters rather than crisp-partitionings [6–8]; if the user
has predefined requirements on whether some objects must or must-

not belong to a same cluster, his partial knowledge can be used to
drive either the metric [9], the representation space [10] or the
clustering process itself [11] with a semi-supervised learning strategy;
the shape of the expected clusters is also subject to studies that aim to
retrieve not only spherical clusters (as with the famous k-means
algorithm) [12] but also ellipsoidal [13,14] and non-convex cluster
shapes [15].

This paper focuses on the last issue that aims at retrieving clusters
with particular shapes – namely symmetrical patterns. Observing
that many physical things that surround us have exact or approx-
imative geometrical properties, symmetrical pattern recognition is of
high interest for example in computer vision. This task has been
tackled using clustering methodologies through the starting work in
2001 from Su and Chou [16] who proposed a new (nonmetric) “point
symmetry” distance and use it with a modified k-means algorithm in
order to retrieve clusters that present a symmetrical structure with
respect to the cluster center (circles, rings, bands, stars, etc.).
Improvements on both the distance measure and the clustering
process have then been proposed in order to

1. deal with situations where clusters themselves are placed in a
(point) symmetric manner [17,18],

2. better explore the solution space that is claimed to be ineffi-
ciently scanned with the original reallocation algorithm [18,19].

On the whole, the previous approaches succeed in the recognition
of symmetrical clusters, as illustrated with the experiments led on
both artificial data sets and real images [16–19]. However, the main
issue in any of the current symmetry based clustering methods is the
fact that they all consider the Euclidean distance as basic information
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in the computation of the proposed point symmetry distances, thus
restricting the approaches to make objects that have natural struc-
turing into clusters with Euclidean symmetrical shapes. In applica-
tion domains where the Euclidean distance is not well adapted to
quantify the closeness between objects, the previous approaches
cannot be used, whereas symmetrical clusters can appear by using a
suitable distance or similarity measure.

Kernelization is a powerful mathematical tool that enables us
to perform implicit projections on the data set thus making a
clustering method like k-means able to retrieve clusters with
nonlinear separating hypersurfaces [20,21]. In the same time this
process generalizes a clustering method designed for a specific
proximity measure (typically the Euclidean distance) to any
similarity measure between objects that can be formalized as a
positive semi-definite matrix [22]. The aim of the present paper is
to extend actual point symmetry distances to high-dimensional
spaces using kernel functions in order to generalize the current
point symmetry based clustering models.

We first recall in Section 2 the definitions and the limitations of the
three main point symmetry distances proposed in [16,17] and [19];
they are all based on the Euclidean distance between a mirror image
point to compute in the original Euclidean space and it(s) nearest
neighbor(s). Such mirror image points make non-trivial the kerneliza-
tion of the point symmetry distances. We propose in Section 3 a
geometrical reasoning that enables us to reformulate each of the three
point symmetry distances as expressions using only scalar products
between initial objects thus leading to a kernelized clustering process
described in Section 4. The two following sections are devoted to
experiments on simulated data sets: in Section 5 we show how the
new kernelized method can effectively retrieve symmetrical clusters
for objects originally compared with a non-Euclidean distance mea-
sure; in Section 6 we take benefit from the projection capabilities
offered by the new kernel-based clustering method and we show that
such projections can be efficiently exploited to deal with data sets for
which non-kernelized approaches fail to retrieve reliable symmetric
clusters, even when symmetric clusters neatly appear from the Eucli-
dean (natural) description of the objects. Finally, Section 7 concludes
the paper.

2. Point symmetry distances and clustering algorithms

In the following we consider a data set X ¼ fx1;…; xNg containing
N objects to organize into K symmetrical clusters Π ¼ fπ1;…;πKg.
When objects can be defined as vectors in a P-dimensional space
RP , we denote as ck the center (or centroid) of cluster πk also
defined in RP as ðck;1;…; ck;PÞT with

ck;v ¼
P

xi Aπk
xi;v

jπk j
ð1Þ

To compare two points in RP , the Euclidean distance is
commonly used as proximity measure:

Jxi�xj J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
v ¼ 1

ðxi;v�xj;vÞ2
vuut ð2Þ

Using the previous notations, we review in the two following
subsections, first the point symmetry distances proposed in [16,17]
and [19] and then, the clustering algorithms used to capture symme-
trical clusters.

2.1. Point symmetry distances

Su and Chou defined in [16] a first so-called “point symmetry”
distance measure that quantifies whether a pattern xiAX is a good
candidate to be member of a symmetrical cluster πkAΠ, represented

by its centroid ck. To be a good candidate, the object xi must have a
(almost) symmetrical object in X with respect to ck. Such a symme-
trical object, denoted xckni in the following, is defined as the nearest
object from its exact mirror point xcki . Fig. 1 illustrates the notions of
mirror point and symmetrical object: xcki is the (exact) mirror point of
xi with respect to the center ck, it is defined by xcki ¼ ð2ck�xiÞ; and
the symmetrical object xckni is the object from X that is the nearest
neighbor from the mirror point:

xckni ¼ argmin
xj AX;xj axi

Jxj�xcki J ð3Þ

For a better understanding of the notations and illustrations, let us
mention that bar notations (e.g. xcki ) and white illustrative points in
the figures (○) are used to indicate points in the RP space that are not
necessarily present in the data set X, whereas unbar notations (e.g.
xckni ) and black illustrative points in the figures (�) refers to objects
from X.

Whatever the hidden symmetrical shape of the cluster πk (an
ellipse in our illustration), the distance Jxcki �xckni J must be as
small as possible to make xi a good candidate for πk. The point
symmetry distance1 proposed in [16] is formalized by

dsðxi; ckÞ ¼ min
j ¼ 1‥N;ja i

J ðxi�ckÞþðxj�ckÞJ
Jxi�ck Jþ Jxj�ck J

ð4Þ

Observing that the minimization of the numerator leads actually to
the distance between the mirror point xcki and its nearest neighbor
xckni in the data set, Bandyopadhyay and Saha [19] rewrote the Su
and Chou's distance in the following manner:

d0sðxi; ckÞ ¼
Jxcki �xckni J

Jxi�ck Jþ Jxckni �ck J
ð5Þ

In fact, contrary to what is claimed in [19], Eqs. (4) and (5) are not
strictly equivalent since the minimization is not only about the
numerator but concerns the whole term in such a way that an other
pattern xjAX could be a better minimizer than xckni because of its
higher distance with the cluster center ck (part of the denominator).
But this phenomenon can be considered as a side effect of the
denominator that was initially introduced as a single normalization
term, and the modified definition of [19] must be seen as a (probably
unintentional) small improvement of the Su and Chou's distance.
Thus, in the following we will use Eq. (5) to denote the point
symmetry distance.

A second, and more noticeable, side effect of the normalization
term in both Eqs. (4) and (5) appears when the point symmetry
distance is used to compare the assignment of a pattern xi to different
clusters. Chou et al. [17] first notice that, when almost symmetrical
objects exist for several clusters, the denominator favors the assign-
ment to the farthest one. This phenomenon typically occurs when

Fig. 1. Illustration of the mirror point xck
i and the symmetrical object xckni of xi with

respect to a cluster center ck in the point symmetry distance computation.

1 It is worth noting at this stage that this measure and any of the symmetric
proximity measures that will be defined in the following are called abusively
“distance”, to the extent that they do not satisfy to the basic mathematical
requirements for such a metric like symmetry, identity or minimality.
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