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In multiple-instance (MI) classification, each input object or event is represented by a set of instances,
named a bag, and it is the bag that carries a label. Ml learning is used in different applications where data
is formed in terms of such bags and where individual instances in a bag do not have a label. We review
MI classification from the point of view of label information carried in the instances in a bag, that is, their
sufficiency for classification. Our aim is to contrast MI with the standard approach of single-instance (SI)
classification to determine when casting a problem in the MI framework is preferable. We compare
instance-level classification, combination by noisy-or, and bag-level classification, using the support
vector machine as the base classifier. We define a set of synthetic MI tasks at different complexities to
benchmark different MI approaches. Our experiments on these and two real-world bioinformatics
applications on gene expression and text categorization indicate that depending on the situation, a
different decision mechanism, at the instance- or bag-level, may be appropriate. If the instances in a bag
provide complementary information, a bag-level MI approach is useful; but sometimes the bag
information carries no useful information at all and an instance-level SI classifier works equally well,

or better.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In pattern recognition, the object or event to be classified is
denoted by an instance x represented as a d-dimensional vector of
features. The training set is composed of N such instances and their
labels, X' = {xt, r'}}_,, where r* is the class label of x'. Here (without
loss of generality), we focus on two-class classification where
instances are negative, i.e., 1’ = —1, or positive, r = +1. The aim is
to learn a classifier f(x") using this training set of instances.

In the framework of multiple-instance (MI) learning [1,2], each
object or event is represented by a bag b". A bag is an unordered set
of instances and different bags may contain different number of
instances:

t
bt = (x8,x5, ..., x)

where n' is the number of instances in bag t. The training set is
now denoted as /"(={bt,rf}f':l where rf e {—1,+1} is the class
label of bag b". Single-instance (SI) classification is a special case
where each bag contains only one instance: bt:{xﬁ}. In the
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multiple-instance case, the classifier works at the bag level and
takes a bag as its input, g(b"), and generates a decision for the bag.

MI learning is applicable when the data is generated as a bag of
instances all somehow related (for example because all are due to the
same hidden cause or factor)—there is a label for the whole but not
for the individual instances. Since its original definition [3], MI
learning has been used in different applications where the only
common characteristic is that inputs are bags of instances, but
different MI learning methods assume different types of relationships
between instances, bags, and hence class labels [1,2].

For example in the original Musk drug activity prediction, a
molecule (bag) has the desired drug effect (positive label) if and
only if one or more of its conformations (instances) bind to the
target site; we do not know a priori which one, so we cannot label
the instances individually, and we have an overall label for the
whole molecule.

As opposed to this, a relatively recent application of Ml is in image
classification where we want to label a scene, e.g., beach, sea, and
desert. The image (bag) is segmented into small patches (instances)
and for example we have a beach image (positive label for the beach
class), if we have a “sand segment” and a “sea segment” (Desert class
is defined as a “sand segment” and no “sea segment”). Here the
problem, though is still M, is quite different from Musk; instances
are subparts and are not at the same level of abstraction as bags and
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therefore, labels at the level of bags, e.g., beach, are not applicable for
instances.

Because of these reasons, though we see numerous applica-
tions of MI in the literature and various learning methods having
been proposed, the MI approach does not always lead to improved
performance [1,2]. It seems that MI learning is sometimes being
used without a meticulous investigation of its assumptions and
concomitant restrictions.

We believe that because of such significant differences in the
underlying characteristics of the MI problems, it may be futile to look
for a single MI learning algorithm that can work successfully on all,
just because they can all be defined in terms of bags. We propose
that a more fruitful approach may be to categorize the different MI
problems in terms of their characteristics and then for each category,
define the requirements for an MI learning algorithm. Such a
categorization also better differentiates MI learning from SI learning.

To summarize, in this paper, we compare SI and MI learning to
be able to clarify what the MI framework brings over SI; our aim is
not to compare the already numerous MI algorithms or propose a
new MI algorithm, but rather to determine when casting a
problem in the MI framework is preferable to SI, and also define
the different MI categories.

More specifically, we make a distinction between MI problems
based on the amount of label information carried by the instances in
a bag, that is their self-sufficiency for classification, or inversely, the
amount of complementary information carried by the instances in a
bag, which we name intra-bag dependency. Towards this aim, we
create a sequence of synthetic classification problems of increasing
complexity, which corresponds to increasing the intra-bag depen-
dency, and we use these to assess and compare the discriminative
power of SI and MI learning.

This paper is organized as follows: In Section 2, we discuss the
spectrum of MI problems. In Section 3, we discuss the instance-
and bag-level classifiers we use in this study and in Section 4, we
define the synthetic tasks we use to assess SI and MI approaches;
we also use them as canonical tasks to quantify the power of
different MI learning algorithms. We give our experimental results
on two sets of real-world bioinformatics data for gene expression
and text categorization in Section 5. We discuss our findings and
conclude in Section 6.

2. The spectrum of multiple-instance problems

We categorize MI problems by the amount of information each
instance in a bag carries about the label:

(1) On one extreme lies the pure instance-level approach. Each
instance can be assigned a label and carries enough information
for classification so that its vectorial representation is sufficient for
it to be classified correctly. In this case, there is no need to take
into account the other instances in the bag and hence no need for
the MI approach. The instances in a bag are labelled with the bag
label and we can train an instance-level classifier f(x). The
instances in a bag are assumed independent: the bag information,
namely, whether two instances are in the same bag or in different
bags, is assumed to be useless and can be disregarded.

For example, if each bag contains a number of face images of the
same person, e.g., from different poses or lighting conditions, and
if each image in a bag is detailed and informative enough for
recognition, then there is no need to define bags for people. In
such a case, the whole operation, including both training and
testing, can work at the instance level. We can just train and use
an instance-level classifier f(x!) that takes a single image x‘ and
makes a decision. As the individual face images deteriorate, for
example due to bad lighting or occlusion, and become less

(2

—

~
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informative, making use of other instances for complementary
information, that is, the MI approach starts making sense.

In the earliest work on MI learning [3], the assumption made
was that a positive bag contains at least one positive instance.
Here, it is assumed that instances carry labels, that is actually
they can be classified as instances, but it is not known which
one(s) carry the label, and because we lack label information at
the instance level, we use the MI approach.

Let us say we have face images of people in a meeting and that
we know one of the faces belongs to the person we want to
identify but we do not know which. Then we have a multiple-
instance problem where the faces in the meeting define a bag.
In the bag, there is one instance which is the “real” positive
instance; the other instances actually are uninformative but
we cannot get rid of them because we do not have label
information at the level of instances.

The approach in such a case is to train an instance-level
classifier, and combine its decisions on the instances in the
bag to get a bag-level decision:

g(bY) = PF(xh). f(Xh), ... f(xE))

The assumption that the positive decision of at least one instance
classifier is sufficient for the bag decision implies the noisy-or as
the combination function [4], but note that the best ¢»() depends
on the application; for example, noisy-or may lead to a high rate
of false positives and when positive bags contain a higher
percentage of positive instances, named the “witness” of the bag
[5], majority vote may be better.

This approach where the bag-level decision is formed by combin-
ing instance-level decisions is named the collective approach, and
various methods have been used for training the instance-level
classifiers and for their combination [6-8]. When we have bags
where some of the instances are positive and the rest have
indeterminate labels, we can also view this as a semi-supervised
learning problem and can handle it as such [9]. Fusing the
decisions for instances to arrive at a decision for the bag can also
be viewed as an ensemble method, where learners each with a
different instance as its input make a decision and a combiner
calculates the overall output [10], e.g., by majority voting.

On the other extreme, an instance in a bag has no label
because an instance by itself carries only a portion of the
information necessary for classification. In such a case, a bag-
level classifier should be used.

As an example, let us say that from a single face image, we
take small patches, e.g., part of an eye and chin as instances,
and all these patches together make up the bag that represent
the face. In such a case, each patch by itself is not informative
enough and no label can be attached, and hence no instance-
level classifier flx) can be trained. We need a bag-level
representation corresponding to the complete image and a
bag-level classifier that uses the collective information from all
the patches, x!.

There are two possibilities: In the bag-space approach [2], we
use a distance function d(x{,xj) for the distance between
instances i and j, respectively, from bags r and s, and we use
these to calculate the distance between bags r and s (typically
by taking average, minimum, or maximum between all possi-
ble pairs). Once we define such a distance between bags, we
can use k-nearest neighbor or any variant, or support vector
machines with a kernel defined through such a distance
function. Another possibility is to directly define a kernel over
bags measuring the similarity of two bags in terms of the
underlying data structure used to represent the bags; for
example, in [11], each bag is represented by a graph and graph
kernels are used with support vector machines.
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