Pattern Recognition 46 (2013) 1762-1771

journal homepage: www.elsevier.com/locate/pr

Contents lists available at SciVerse ScienceDirect

Pattern Recognition

PATTERN
RECOGNITION

Robust visual tracking with discriminative sparse learning

Xiaogiang Lu, Yuan Yuan™, Pingkun Yan

Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics,

Chinese Academy of Sciences, Xi’an 710119, Shaanxi, PR China

ARTICLE INFO ABSTRACT

Available online 23 November 2012

Keywords:

Visual tracking

Sparse representation
Particle filter

Non-local self-similarity

Recently, sparse representation in the task of visual tracking has been obtained increasing attention and
many algorithms are proposed based on it. In these algorithms for visual tracking, each candidate target
is sparsely represented by a set of target templates. However, these algorithms fail to consider the
structural information of the space of the target templates, i.e., target template set. In this paper, we
propose an algorithm named non-local self-similarity (NLSS) based sparse coding algorithm (NLSSC) to
learn the sparse representations, which considers the geometrical structure of the set of target

candidates. By using non-local self-similarity (NLSS) as a smooth operator, the proposed method can
turn the tracking into sparse representations problems, in which the information of the set of target
candidates is exploited. Extensive experimental results on visual tracking have demonstrated the
effectiveness of the proposed algorithm.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Visual tracking is now a widely used technique in many
applications such as security and surveillance, vehicle navigation,
human computer interaction, and so on [1,2]. In order to design a
robust visual tracking method under change conditions, the
challenges are caused by the presence of scale, occlusion, pose
variations, background clutter and illumination changes [3,4].
A detailed review can be found in Refs. [16,30,31]. Generally, the
visual tracking problem can be classified in two different cate-
gories: generative and discriminative. The generative tracking
methods adopt an appearance model to express the target obser-
vations. Some generative tracking methods include eigentracker
[7], mean shift tracker [10], incremental tracker [15], and covar-
iance tracker [14]. Ross et al. [15] present a tracking method that
trains a low-dimensional subspace representation, and fits online
changes in the target appearance. However, the appearance model
needs to be often dynamically updated to fit the target appearance
variations due to the rotation changes and scale variations.

Discriminative tracking methods address the tracking as a
classification problem [25,26]. The strategy of tracking is to
search the target location, which optimally extracts the target
from the background [32,33]. Avidan et al. [5] form a feature
vector by every pixel in the reference image and an adaptive
ensemble of classifiers is trained to separate the object from the
background. Collins and Liu [9] build a confidence map by
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searching the most discriminative RGB color combination in each
frame. Yu et al. [18] propose a mixed combination of a generative
model and a discriminative classifier to capture appearance
variations. Babenko et al. [6] adopt online multiple instances
learning to be robust to occlusions and other image corruptions.
Yin and Collins [17] adopt global mode to search the object, and
reinitialize the local tracker. Aran and Akarun [8] use an image
fusion approach for discrimination and a generative approach for
the target updates.

Recently, sparse representation has been introduced for tracking
in Refs. [9,29] and later exploited in Ref. [12]. In Ref. [13], a target
candidate is sparsely represented as a linear combination of target
templates and trivial templates that only have one nonzero element
in each of them. The sparse representation problem is solved
through a L1 minimization problem to solve the model tracking
problem [13,29]. However, based on the L1 sparse representation,
these similar target candidates often have very different estimates
due to the potential instability of sparse decompositions, which can
result in bad tracking performance. In this case, it is necessary to
exploit the geometry of the target candidate set to stabilize the
sparse decompositions. Moreover, L1 methods assume that sparse
representations of particles are independent. The structure relation-
ships that ultimately constrain particle representations can be
ignored in the L1 methods, which will result in bad tracking
performance in cases of significant changes in appearance [37].

Recently, researches have shown that the geometrical structure
of the data can improve the learning performance for discrimina-
tive training [34-36]. Felzenszwalb et al. [35] demonstrate an
object detection system using mixtures of multiscale deformable
part models. By using latent information and matching deformable
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models to images, the proposed system is both efficient and
accurate. Han et al. [36] present a statistical model called statistical
local spatial relations (SLSR) to analyze the local region relations,
which can resist some geometry transforms such as rotation, scale,
viewpoint changes and part occlusion.

Motivated by recent progress of non-local self-similarity and
sparse coding [22], in this paper, we propose a novel algorithm,
called non-local self-similarity regularized sparse coding (NLSSSC),
which explicitly considers the geometrical structure of the target
and templates set. NLSSSC builds a k-nearest neighbor to encode
the structure information in the target. The non-local self-similar-
ity (NLSS) is regarded as a regularizer, which is incorporated into
the sparse coding algorithm to preserve the structure information
of the target. In order to obtain a proper sparse representation,
the L2-norm regularization term of NLSS regularizer is replaced
with L1 norm due to the success of compressed sensing [23].
Through preserving the structure information in the target
candidate set, NLSSSC can have more discriminating power com-
pared with the traditional algorithms and improve visual tracking
performance.

The tracked target are often corrupted by noise or occluded in
many visual tracking scenarios, which result unpredictable error.
Although most trackers adopt different measure to reduce the
error, they fail and cannot track the target with severe occlusions.
The poor performances of most trackers are caused by the
presence of occlusion, illumination changes, scale changes and
varying view points. The performance depends on the degree of
the similarity between the target and the templates. Hence, it is
necessary to designing a robust visual tracking algorithm by
consider the prior knowledge of the target and the templates.
To further improve robustness, we propose an algorithm named
non-local self-similarity (NLSS) based sparse coding algorithm
(NLSSC) to learn the sparse representations, which considers the
geometrical structure of the set of target candidates. The prior
knowledge of the geometrical structure of data is successfully
applied into the image process [34]. By using non-local self-
similarity (NLSS) as a smooth operator, the proposed method
demonstrates very promising performances. The main contribu-
tions of this paper are as follows:

1. A novel algorithm named non-local self-similarity (NLSS)
based sparse representations is developed by considering the
geometrical structure of the set of target candidates. To the
best of our knowledge, few publications utilize such a frame-
work in visual tracking scenarios. In addition, the obtained
new penalty can generate more stable solutions than the L1
penalty.

2. The different video sequences involving scale, occlusion, pose
variations, background clutter and illumination changes are
tested to show that the proposed method demonstrates very
excellent performances compared to other trackers.

The rest of this paper is organized as follows. The original
L1-tracker is reviewed in Section 2. Section 3 introduces the NLSSSC
algorithm for visual tracking, as well as the optimization scheme,
including learning sparse representations. The experimental results
on visual tracking are presented in Section 5. Finally, Section 6
concludes this paper.

2. L1-tracker with sparse representation

In this section, we will first review the original L1-Tracker
framework [13], which effectively combines the particle filter and
the sparse representation.

2.1. Particle filter

The L1-Tracker addresses the visual tracking as a sparse
representation problem in the particle filter framework [11]. For
frame at time t, z, is denoted as the state variable describing the
location and shape of a target, which can be modeled by the
velocity components and the affine transformation parameters.
In order to propagate the particles, the parameter of the velocity
is introduced into the objection motion. The Gaussian distribution
around the previous state z,_ is exploited to approximate the
transformation parameter of the state variable z,. The tracking
problem is represented as estimation of the state probability
(z¢|y1:¢), where yi, = (y1.¥2.---.y;) represents the observations
from previous t frame [11]. A two-stage Bayesian sequential
estimation can be used for the tracking process. Applying Bayesian
theorem, the filtering distribution can be recursively updated as

p(ze|y1e1) = /P(Zt\qu)P(Zpl |V1.co1)dzea, (1

p(zt|y1e) P (Velze)P(2t|Y1.01), )

where p(z¢z;_1) denotes the state transition probability, and
p(yt|z;) denotes the observation likelihood. The variable y; is the
region of interest cropped from the image, which can be normal-
ized to be the same size as the target templates. It is practically
intractable to directly calculate the above distribution. In the
particle filter, the posterior p(z:|y.) is approximated by a finite
set of M particle samples {zi}?/’:] with importance given to
weights. For each frame, the samples need to be updated and
resampled.

In the L1-Tracker, the state variable z; is modeled by six
parameters of the affine transformation [13]. The state transition
of z, are formulated independently as a Gaussian distribution
around the previous state variable z,_;. The state transition
model p(z¢z;_1) can generate the M candidate samples. The
observation model p(y¢|z;) can be approximated by a Gaussian
distribution, which indicates the approximation error between a
target candidate and the target templates. The approximation
error can be represented in the sparse representation described as
following.

2.2. Sparse representation

To formulate the approximation error via observation likelihood
p(¥e|ze), a patch is extracted from y, corresponding to state z.
The patch can be reshaped to a 1D vector x [13]. For a set of M
particle samples Z; = {2}, ---,zM}, the patch matrix X = [x1, ---,Xu]
€ R™M s the corresponding target candidate set. The sparse repre-
sentation of X is formulated as a regularized L1 minimization
function:

Min | X—BS|+[S|,. 3)

where B=|[T,I] consists of the target template set T and trivial
template set I. The matrix whose columns in T =[t;, - - - ,tn] € R*"
are target template, and [ is an identity matrix. S=[A;E] consists of
target coding coefficient matrix A =[a;,dy, - - -,a,] and trivial cod-
ing coefficient matrix E=[eq,ey,---,en] respectively. Finally, the
observation likelihood can be obtained from the reconstruction error
of z as

p(yt‘z't) — e“/’HT&x—Xiuiy (4)

where the vector @; can be gotten by solving the L1 minimization
(3), ¢ is a constant controlling the similarity. For tracking at time
instant t, the target candidate of the maximum observation
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