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This paper presents a classification approach, where a sample is represented by a set of feature vectors

called an attributed point pattern. Some attributes of a point are transformational-variant, such as

spatial location, while others convey some descriptive feature, such as intensity. The proposed

algorithm determines a distance between point patterns by minimizing a Hausdorff-based distance

over a set of transformations using a particle swarm optimization. When multiple training samples are

available for each class, we implement multidimensional scaling to represent the point patterns in a

low-dimensional Euclidean space for visualization and analysis. Results are demonstrated for latent

fingerprints from tenprint data and civilian vehicles from circular synthetic aperture radar imagery.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Suppose that a class sample is represented by a collection of
feature vectors consisting of transformation-variant features
along with other attributes. For example, a fingerprint can be
represented by a set of minutiae, each containing two-dimen-
sional (2D) spatial location along with type and orientation
attributes [1]. The collection of feature vectors is referred to as an
attributed point pattern or point set. The locations are subject to
an unknown rigid transformation. When comparing two different
samples, it may be necessary to register the location information
before comparing the two point sets.

Researchers have approached point set classification by
adopting a data representation that is invariant to a class of
transformations. Example methods include graph based methods
[2] and spectral correspondence methods that compare the point
adjacency matrices from patterns [3,4]. Typically, the transforma-
tion invariant approaches yield matching performances that break
down in the presence of noise, clutter, and occlusion [5].

Other researchers have developed methods to directly register
two sets. Early methods [6,7] require a correspondence and
minimize the sum of squared distances between corresponding
points. Later methods iteratively discover a correspondence
during the registration process with the iterative closest point
(ICP) method [8,9]. To remove the correspondence all together,
some have applied Hausdorff distance based registration [10,11]
or a difference of convex functions formulation [12].

In this paper we estimate the registration of sets using a
Hausdorff distance based technique. Registration and set distance
are related; the estimated registration between two sets yields
the minimum distance between the two sets. Thus we refer to the
distance between two sets under their estimated registration
simply as the set distance (SD). Partial versions of the Hausdorff
distance [10,13,14] are naturally robust to clutter and occlusions
since they find a best subset match between two sets.

In previous work, Yin [11] demonstrated a method to register
two 2D point patterns by minimizing a partial Hausdorff distance
between the two patterns with a particle swarm optimization.
The Yin article registered synthetically generated 2D point
patterns perturbed by rigid transformations, random clutter, and
random occlusions. We extend Yin’s contribution with four
meaningful steps:

� In addition to 2D location, we include attributes that add more
information to the point pattern. The associated distance
between individual points can be characterized with a
Mahalanobis distance using an appropriately selected error
covariance matrix.
� In addition to registering point patterns, we use a version of

the minimized partial Hausdorff distance as a pseudo-metric
for a nearest neighbor (NN) classifier. Augmented distance
matrices created from multiple samples are observed to be
nearly positive definite, which reveals that the pseudo-metric
well approximates a valid a distance measure.
� We demonstrate the first classification results for persistent

radar surveillance; prior art has been restricted to narrow
apertures. Further, we give the first published results for
classification of civilian sedans, which present very small and
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very similar radar signatures, in comparison to military
vehicles. To illustrate the generic applicability of attributed
point patterns, we also present a small example for latent
fingerprints.
� For applications with multiple training samples, we describe

multidimensional scaling (MDS) and Landmark MDS
(LMDS) as tools for visualization, analysis, and alternative
classifiers.

Advances in processing and high performance computing have
made it possible to tractably solve optimizations necessary for the
registration and classification in a multiclass problem [15,16].
Fig. 1 describes the proposed classification algorithm. Given
a database of training images, we extract a set of transformation-
variant feature vectors (attributed points) for each image; the
database is represented as a set of sets H¼{H1, H2,y,Hi,y}. Then,
given a query image, we extract a set Q of attributed points and
calculate a set distance di from the query to each set in the
database. Using a nearest neighbor test, the classification C is
determined from the minimum set distance between Q and each
Hi. Thus,

C ¼ arg min
i

dðQ ,HiÞ: ð1Þ

Fig. 1 shows several application specific parameters used in the
set distance calculation. The distances between attributed
point patterns are minimized under a transformation T. The
measurement error covariance matrix S is used to calculate a
Mahalanobis distance between individual feature vectors. Based
on the estimated level of clutter in a query, the parameter K is set
to facilitate the best subset match. Finally, the particle swarm
optimization (PSO) is run for a specified number of particles and
iterations as determined by training.

Notice that green boxes in Fig. 1 are performed offline, while
dashed boxes are part of the optional MDS/LMDS chain. If
multiple training samples are available, it is possible to generate
a matrix of distances dij between patterns in the union of classes.
By applying multidimensional scaling (MDS), the samples are
represented in a Euclidean space, XiARn, for a visualization of
class separation and an analysis of the pseudo-metric. Given the
points in the Euclidean space, it is possible to train classifiers
other than NN, such as a support vector machine (SVM) or a linear
discriminant analysis (LDA) classifier. When a measured query
sample Q is available, we can map the sample into the Euclidean
space using a landmark MDS algorithm (LMDS) [17] for
visualization or classification.

The remaining sections are organized as follows. Section 2
describes Fig. 1 with subsections detailing the set distance,
MDS analysis/training, and LMDS visualization/classification. In
Section 3 we use the proposed approach in two applications:
latent fingerprint classification and 10-class vehicle classification
using circular synthetic aperture radar (SAR). Section 4 provides a
summary and discussion of results.

2. Set classification

2.1. Sets distances using the Hausdorff distance

The Hausdorff distance (HD) is a well-known method for
representing the distance between two point sets without having
a prior correspondence between the two sets. Huttenlocher et al.
[10] applied the classical Hausdorff measure [18] concept to
matching point sets. Essentially, the HD is the distance of the most
isolated point between Q and Hi. However, an outlier or occlusion
could skew an otherwise close registration, in which case, the
partial Hausdorff distance (PHD) [10], which is the K th minimum
distance between points in the sets, may be used. We apply a
more robust form of the PHD called the least trimmed square
Hausdorff distance (LTS-HD), which takes the mean of the K

minimum distances between point sets [19]. To formally describe
the LTS-HD, first let dHi

ðqÞ be the distance from any qAQ to its
nearest neighbor in Hi, and let dHi

ðqÞðkÞ denote the kth value from
the sorted sequence of nearest neighbor distances calculated for
all members of Q to Hi. The directed LTS-HD may be written

hK ðQ , HiÞ ¼
1

K

XK

k ¼ 1

dHi
ðqÞðkÞ: ð2Þ

The point sets Q and Hi are not necessarily registered prior to
calculating the LTS-HD. Rucklidge [20] investigated minimizing
the PHD over rigid transformations with scaling. We build upon
this concept by using the LTS-HD and generalizing the underlying
norm with the Mahalanobis distance [21]. The resulting set
distance is defined by

di ¼min
T

hK ðTðQ Þ,HiÞ, ð3Þ

where T is the set transformation. In our application, T defines
rigid transformations in a 2D plane; however, T is flexible to fit the
desired application such as scaling, shifts in time, or 3D
transformations.

The underlying nearest neighbor distances in (2) are calculated
from the Mahalanobis distance, here represented as a norm
between qAQ and hAHi such that

Jq�hJ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq�hÞTS�1

ðq�hÞ
q

, ð4Þ

where S is the measurement error covariance matrix for the vectors
in a point set. The Mahalanobis distance facilitates the comparison of
vectors, where the various dimensions have different scales,
different error sources, or correlated errors. For example, in radar,
some attributes may contain spatial locations of bright reflectors,
while other attributes contain information about intensity, polariza-
tion, or direction of illumination. Use of an appropriate error
covariance matrix increases class separability. In practice, it is
typical to estimate the measurement error variances of each feature
in the feature vectors to populate the diagonal of S; however,
determining the off-diagonal covariance terms may improve results.

Fig. 1. Calculate the set distance between the query Q and each class sample Hi; the nearest neighbor classification is the shortest distance. An optional chain of processing

for analysis/visualization or alternative classifiers using MDS/LMDS is indicated with the dashed boxes. Offline processing is shown in green. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

K.E. Dungan, L.C. Potter / Pattern Recognition 43 (2010) 3805–38163806



Download English Version:

https://daneshyari.com/en/article/530572

Download Persian Version:

https://daneshyari.com/article/530572

Daneshyari.com

https://daneshyari.com/en/article/530572
https://daneshyari.com/article/530572
https://daneshyari.com

