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a b s t r a c t

Neurochemical and pharmacological studies of the central nervous system are important in

understanding normal brain function and discovering effective treatments for brain diseases. Imaging

systems are capable of providing large spatiotemporal chemical information, but they require the

subject to remain still during recording. Implantable chemical sensors can be used in freely behaving

animals and are able to provide higher resolution than imaging systems, but only in close proximity to

the sensor.

The aim of this research was to design and evaluate an artificial neural network capable of

generating 3D chemical information over time using data acquired from a limited number of chemical

sensors that could eventually be recorded from a freely behaving animal. The results show that the

spatiotemporal neural network is capable of learning ion diffusion in a model of the cortical brain, in

ideal or noisy conditions, and that network simulations of sensor data are as accurate as mathematical

simulations.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Neural disease and disorders affect approximately 100 million
Americans every year with costs estimated to be more than $500
billion [1]. Although much has been learned about components
involved in neural function and disease, the dynamics of chemical
mechanisms in the brain have not been fully characterized. More
effective research into the underlying causes of disease and
development of treatments would, in the long term, benefit
millions of people and decrease costs by treating the disease
instead of its symptoms.

The study of brain neurochemistry and pharmacology often
involves research with animal models to determine the mechan-
isms of learning, memory, neurodegenerative diseases, and
mental illnesses, to name a few [2]. Current tools available for
studying neurochemicals in vivo include non-invasive imaging
techniques and implanted chemical sensors. While the former are
used predominantly in medical diagnosis, the latter are widely
used in animal research. This is primarily due to the fact that
diagnosis of disease in humans typically avoids invasive explora-
tion unless absolutely necessary (e.g., biopsies). Small rodents
such as rats or guinea pigs are used in most animal studies due to
their relative low cost while being acceptable research models.

Their brain is relatively small (�2 g) compared to the human
brain (1300–1400 g) [3]. Resolution limitations on non-invasive
imaging tools, along with movement of the animal, inhibit their
use in animal research. Table 1 summarizes uses and limitations
of current imaging systems.

Sensors can be implanted in the animal’s brain for studies over
long periods, although the data only provide a local concentration
without the 3D images that the non-invasive imaging technolo-
gies are capable of producing. Problems such as inflammation at
the insertion point and signal drift in chronic studies are being
addressed by research into the sensor shape, insertion technique,
and inflammation-resistant coatings or drugs [4–11]. In addition,
many different implantable sensor arrays have been reported,
which could provide more spatial information [12–15].

The aim of this research is to develop an artificial neural
network capable of learning spatiotemporal chemical diffusion in
the cortical brain. Such a network could eventually be coupled
with chemical sensor arrays in order to measure the chemical
function locally in the brain of a freely behaving animal.
Successful development of this network could significantly
enhance the ability to investigate neurochemical and pharmaco-
logical mechanisms in brain function and disease.

2. Neural networks

Artificial neural networks (ANN) have the potential to learn
from the measurements of sensors and predict values at locations
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where no sensors are present. One type of ANN, the recurrent
neural network (RN) has bidirectional data flow, which allows the
network to learn temporal information, such as speech [16], or
spatial information, like in virtual reality [17,18].

Studies on combined temporal and spatial learning with neural
networks in the areas of sea scattering signals [19], pattern
learning and recognition [20,21], brain–machine interfaces [22],
ground–water pollution [23], and vision [24] have been pub-
lished. These networks either used unsupervised learning in 1–3D
space or up to 2D with supervised learning. However, 3D
spatiotemporal networks using supervised learning have not
been thoroughly studied.

2.1. Elman networks

Recurrent neurons were the building blocks of this novel
spatiotemporal network with parallel subnets joined together to
provide a final output. The Elman network was used as the
recurrent subnet in the network because of its simplicity. The
Elman network is able to perform sequence-prediction tasks that
are beyond the capability of a standard multi-layer perceptron by
maintaining memory. It uses the least amount of computations of
all the RNs; however, the Elman network usually requires more
neurons in the hidden layer to learn a system compared to more
advanced RNs.

The Elman network has at least three layers (input, hidden, and
output) and a set of context units in the input layer [16,25].
Connections from the hidden layer go to the context units with a
weight fixed at one. The input is fed forward at each time step and
then a learning rule, such as back-propagation, is applied. The
context units always maintain a copy of the previous value of the
hidden units since they propagate over the fixed back connections
before application of the learning rule.

For a basic Elman network, there is one hidden layer of
neurons that apply a ‘tansig’ function, which compresses the
magnitudes of its inputs to the range of �1 to 1 [25]. The output
layer contains neurons with ‘purelin’ functions, which pass their
input to the output unchanged. This unique combination enables
Elman networks to approximate, with arbitrary accuracy, any
function with a finite number of discontinuities [25].

2.2. A configuration of Elman networks for learning spatial and

temporal patterns

This system employs Elman networks as subnets in a larger
network with the aim to recognize both spatial and temporal
informations. To accomplish this aim, the spatial information is
input to the network, via the subnets, at each time step while the
temporal information is learned by feeding inputs sequentially.

The networks were designed and evaluated in MATLAB using
the Neural Network Toolbox (The MathWorks, Inc.). The structure
of the complete spatiotemporal recurrent network (STRN) con-
sists of two stages of networks. In the first stage, individual
networks are trained by inputs from a given sensor. As illustrated
in Fig. 1, a unique sequence of vectors is fed into the hidden layer
of each Elman subnet. At each time step, the input vector consists
of the value (e.g., concentration), the maximum and the minimum
values from the current and four previous time steps, and a least
squares value from the current and four previous time steps. All of
these parameters are commonly used as inputs in neural
networks. The minimum, maximum, and LSE provide
information on the variability of concentration over time. In
addition, x, y, and z coordinates for concentration measurements
from a given sensor relative to the sensor set as the origin for a
particular subnet were included in the input vector to provide
spatial information for the network to learn.

Table 1
Uses and limitations of existing functional imaging technologies [39].

Advantages Disadvantages

CT � Excellent images of skull, sulci, and ventricles.

� Volumetric and dynamic images can be obtained if spiral CT is used.

� Has proven useful in diagnosing certain brain disorders

� Relatively low scanning time.

� Artifacts often arise in regions containing very dense structures (e.g.

areas close to bony interfaces).

� Patient is exposed to ionising radiation.

� Only transverse slices obtained

� In order to get different slices of the body, the patient and/or machine

must be put into different positions.

� Cannot be used on patients allergic to the dye

fMRI � Can map brain’s functional responses to specific stimuli.

� Non-invasive and safe.

� Will help to learn more about neurophysiology in both disease and

health.

� Reference anatomic images are simultaneously acquired with the

functional data.

� Pacemakers, shell injury, plates, screws, or metallic implants are

contraindications.

� Subjects have to remain still.

� Procedure may take �45 min. to complete

� Price of scanner is expensive

� Artifacts near skull base limit its use.

� Resolution limited to 0.5 cm voxel

PET/SPECT � Exact quantification of cerebral blood flow and metabolism.

� Whole head imaging is more reliable.

� Neuroreceptor concentration and affinity can be measured.

� Non-invasive alternative to biopsy.

� Available in most departments of nuclear medicine.

� Large numbers of radiotracers available.

� Cost effective.

� Radionuclide scanning technique

� Cannot be used repeatedly

� Need to inject isotope for each new task.

� Anatomic data need to be obtained separately

� Limited resolution

� Limited but growing availability.

� Absolute quantification is not possible, and bilateral symmetrical

reduction is difficult to recognize.

MRS � Direct investigation of phosphorhylated intermediate metabolites &

neurotransmitters (e.g. GABA and glutamate).

� In certain situations, biopsy may be avoided (e.g. tumefactive lesion of

demyelination mimics neoplasm¼4spectra suggests destructive

demyelination).

� Long procedure if one is interested in quantification at molecular level.

� Only limited substrates are measurable.

� Voxel size may be larger than lesion.

� Irregularly shaped lesions may not conform to voxel margins.
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