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a b s t r a c t

Dimensionality reduction has many applications in pattern recognition, machine learning and computer

vision. In this paper, we develop a general regularization framework for dimensionality reduction by

allowing the use of different functions in the cost function. This is especially important as we can

achieve robustness in the presence of outliers. It is shown that optimizing the regularized cost function

is equivalent to solving a nonlinear eigenvalue problem under certain conditions, which can be handled

by the self-consistent field (SCF) iteration. Moreover, this regularization framework is applicable in

unsupervised or supervised learning by defining the regularization term which provides some types of

prior knowledge of projected samples or projected vectors. It is also noted that some linear projection

methods can be obtained from this framework by choosing different functions and imposing different

constraints. Finally, we show some applications of our framework by various data sets including

handwritten characters, face images, UCI data, and gene expression data.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In data analysis problems where there are a large number of
input variables, it is often beneficial to reduce the dimension of
data in order to improve the efficiency and accuracy of data
analysis. Consequently, dimensionality reduction becomes one of
key techniques in data analysis. Dimensionality reduction aims at
reducing the dimensionality of data such that the extracted
features are as representable as possible. During the past several
decades, a variety of algorithms and techniques [1–8] for
dimensionality reduction have been developed. Among them,
principal component analysis (PCA) and linear discriminant
analysis (LDA) are regarded as the most powerful tools of
dimensionality reduction. In general, PCA is to find an orthogonal
set of vectors by maximizing the variance of the projected data,
whereas LDA is to seek discriminant vectors by maximizing the
ratio of the between-class distance to the within-class distance. It
is shown that LDA is a more effective method for extracting
features in the classification problem as compared to PCA in
general cases. However, LDA often suffers from the small sample
size (3S) problem when the dimension of data is much larger than
the number of data points.

In recent years, many approaches [10–16] have been proposed
to deal with high dimensional data and the 3S problem. For
example, the Fisherface method [2] first applies PCA to reduce the

dimension of samples to obtain a full-rank within-class scatter
matrix. Then standard LDA is used to extract features. In [15],
Chen et al. proposed the null space-based LDA, where the
between-class scatter is maximized in the null space of the
within-class scatter matrix. In [12], Howland and Park proposed
the LDA/GSVD algorithm which circumvents the singularity
problem by using the generalized singular value decomposition.
Direct LDA [17] first removes the null space of the between-class
scatter matrix and then seeks the projection to minimize the
within-class scatter. In order to reduce the computational cost of
LDA, Ye and Li [5] proposed a two-stage LDA extension (LDA/QR).
Their method first applies the QR decomposition on a small
matrix, and then followed by LDA. Further, Zhang and Sim [10]
analyzed LDA via the Fukunaga–Koontz transform, which provides
a unified framework for understanding some variants of LDA. In
[14], Li et al. proposed an efficient and stable method to calculate
discriminant vectors based on the maximum margin criterion
(MMC). The difference between Fisher’s criterion and MMC is that
the former maximizes the Fisher quotient while the latter
maximizes the average distance. In [18], the authors proposed a
unified framework for generalized LDA via a transfer function. It is
shown that uncorrelated LDA is a special case of PCA plus LDA and
regularized LDA.

Although PCA and LDA have been successfully used in solving
some problems in pattern recognition and machine learning, they
are prone to the presence of outliers due to the fact they do not
involve robust functions in the cost function. In order to deal
with this problem, some researchers proposed robust algorithms
[19–24] for dimensionality reduction in recent years. In [24], the
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authors formulated matrix factorization as an L1 norm minimiza-
tion problem, which can be efficiently solved by alternate convex
programming. However, the solution does not have rotational
invariance. Considering this point, the authors [21] proposed
rotational invariant L1 norm principal component analysis which
combines some merits of PCA and L1 PCA [24]. Their method can
suppress the effect of outliers by defining a modified covariance
matrix which softens contributions from outliers. In [19], the
authors proposed a method of principal component analysis
based on a new L1 norm optimization technique. The L1 norm
optimization algorithm is robust to outliers and is easy to
implement.

Note that the algorithms for robust PCA are to minimize the
error between original data and reconstructed data in terms of
different objective functions. However, they may produce un-
desirable classification performances due to the fact they are
devised from the viewpoint of data reconstruction. Furthermore,
they do not make full use of prior knowledge of data points such
as the geometrical structure of data points. To this end, we
develop a regularization framework of discriminant analysis by
using prior knowledge of data points. In this framework, one can
flexibly choose robust functions to suppress the presence of
outliers. Moreover, a regularization parameter is used to control
the tradeoff between the data reconstruction error and prior
knowledge of data points. It is found that the optimization
problem can be formulated as a nonlinear eigenvalue problem
under proper conditions. Further, we propose a projected non-
linear eigenvalue problem. In addition, we also conduct extensive
experiments to evaluate the proposed framework on various data
sets including handwritten numerals, UCI data sets, face images
and gene expression data. Overall, the main contributions of this
paper include

(1) We develop a regularization framework of discriminant
analysis for dimensionality reduction. In this framework, one
can choose robust functions to suppress the presence of
outliers. Moreover, we are also capable of using this frame-
work to implement the data reconstruction problem.

(2) We give the detailed analysis on the relationship among some
linear projected methods. In particular, we show that
regularized MMC is a special case of our framework, which
helps explain why regularized MMC is a robust feature
extraction method, and also point out the range of the
regularization parameter in regularized MMC.

(3) We conduct extensive experiments on various data sets to
evaluate the effectiveness of our framework and compare it
with some linear projected methods.

The rest of this paper is organized as follows. Section 2
overviews linear projection methods including PCA, LDA, MMC,
and regularized MMC. In Section 3, we give a regularization
framework of discriminant analysis for dimensionality reduction
and show how to solve the optimization problem. In Section 4,
links to some existing linear projected methods are given. Section
5 gives the detailed experimental results. Section 6 contains some
concluding remarks and further directions.

2. PCA, LDA, MMC and regularized MMC

Assume that x1; . . . ; xm are a set of n-dimensional samples of
size m, xiARn

ði¼ 1; . . . ;mÞ. Each sample belongs to exactly one of
c object classes fl1; . . . ; lcg and the number of samples in the ith
class is mi. The between-class scatter matrix, the within-class

scatter matrix, and the total scatter matrix are defined as:

Sb ¼
Xc

i ¼ 1

miðmi � mÞðmi � mÞ
T ;

Sw ¼
Xc

i ¼ 1

X
xA li

ðx� miÞðx� miÞ
T ; St ¼

Xm

i ¼ 1

ðxi � mÞðxi � mÞT ;

where i is the centroid of the ith class and m is the global centroid
of the sample set.

2.1. PCA

Principal component analysis, also called Karhumen–Loeve
transform in some sense, extracts the desired number of principal
components for data by minimizing the mean squared error
criterion. The optimal linear transformation UARn�k for PCA is
the one that maximizes the total scatter in a reduced dimensional
space. The matrix U can be obtained by performing the eigen-
decomposition on St and the columns of U are eigenvectors of St

corresponding to the first k largest eigenvalues. It is easy to verify
that the ith eigenvalue is the variance of data that is projected
onto the ith eigenvector. A good property of PCA is that it
decorates the data.

2.2. Classical LDA

Classical LDA seeks the direction on which data points of
different classes are far from each other while requiring data
points of the same class to be close to each other. To be specific,
LDA is to find the optimal projection by optimizing the objective
function in the following:

max traceððUT SwUÞ�1
ðUT SbUÞÞ: ð1Þ

The optimal transformation U can be obtained by solving the
generalized eigenproblem: Sbu¼ lSwu. In general, there are at
most c�1 eigenvectors corresponding to nonzero eigenvalues
since the rank of the matrix Sb is not bigger than c�1. When Sw is
singular, one can overcome it by applying some methods such as
LDA/QR [6], PCA plus LDA [2], LDA/GSVD [9], and LDA/FKT [10].

2.3. MMC and regularized MMC

MMC aims at maximizing the average margin between
different classes. To be specific, MMC is to optimize the objective
function: traceðUT ðSb � SwÞUÞ under the proper constraint. The
optimal transformation U can be obtained by performing the
eigen-decomposition on the matrix ðSb � SwÞ. The matrix U is
composed of the first k eigenvectors of Sb � Sw corresponding to
the first k largest eigenvalues. The regularized MMC is to
maximize traceðUT ðSb � gSwÞUÞ with a nonnegative regularization
parameter g. As pointed out in [25], the MMC or regularized MMC
can also be performed within the range space of St since the null
space of St does not contain any discriminant information. As a
result, the computational complexity of MMC or regularized MMC
can be further reduced.

3. The regularization framework of discriminant analysis

3.1. The regularization framework

In this section, we assume that the data is centralized without
loss of generality. In fact, this is easily obtained by a translation of
data. It is shown [26] that the standard PCA is equivalent to
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