

Stereoselective Synthesis of Methyl trans-Chrysanthemate and Related Derivatives

Alain Krief * and Laurent Provins

Laboratoire de Chimie Organique de Synthèse, Department of Chemistry, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, B-5000 NAMUR (Belgium).

Received 4 November 1997; revised 12 January 1998; accepted 16 January 1998

Abstract: γ-hydroxyalkenylstannanes, readily available from α , β -unsaturated esters, α , β -unsaturated aldehydes and tri(n-butyl)stannyllithium, react with boron trifluoride etherate to produce vinyl cyclopropane carboxylic esters. An original highly convergent synthesis of chrysanthemic acid is reported. © 1998 Elsevier Science Ltd. All rights reserved.

We previously described a short synthesis of methyl trans-chrysanthemate $1a_t$ from methyl 5-methyl-2,4-hexadienoate 3 and acetone 4 which formally involves the insertion of the 2-propylidene moiety 4^+ , derived from the deoxygenation of acetone, regionselectively on the C,C double bond closer to the ester group (Scheme 1, route a). The key step of this process implies the 1,3-elimination 1,2 of the tributylstannyl- and hydroxyl-groups on the γ -hydroxyalkenylstannane 2a (SOCl₂, Et₃N, CH₂Cl₂, 0°C, 0.5 h), obtained by trapping, with acetone, the enolate derived from the 1,4 addition of tri(n-butyl)stannyllithium 5 on 3 (Scheme 1, route a).

We now report an even more convenient route to the same compound $1a_i$ (Scheme 1, route b) which uses a closely related strategy, the same key step involving the same leaving groups (the hydroxyl and the stannyl ones), but attached in a reverse order, on the same carbon framework (compare the γ -stannylalkenol 2a to the γ -hydroxyalkenylstannane 2'a, Scheme 1).

The desired γ -hydroxyalkenylstannane **2'a** was readily synthesized, as a mixture of two diastereoisomers by sequential addition of tri(n-butyl)stannyllithium **5**³ and 3-methyl-2-butenal **7** (THF, -78°C, 64% yield, **2'a**_d/**2'a**_b, 67/33), it is interesting to notice the successful addition of tri(n-butyl)stannyllithium to the highly hindered carbon of **6a**.

Scheme 2

The cyclization step involves the 1,3-elimination of the hydroxyl- and tri(n-butyl) stannyl-group from 2'a. We expected from our previous work¹ that thionyl chloride-triethylamine would be the most successful combination for that purpose, but that proved not to be the case. We in fact got a quite unstable compound, whose structure was tentatively assigned to be 8'a, which decomposes on silica gel to provide the ε -hydroxy- γ -alkenyl stannane 9'a and the denylstannane 10'a, resulting from the rearrangement and the dehydration of 2'a respectively (Scheme 3).

Scheme 3

Use of boron trifluoride etherate (1.5 eq., CH_2Cl_2 , 20 °C, 1h), which did not worked properly on the γ -hydroxyalkenylstannane $2a_1^{-1}$ allows however the synthesis of methyl *trans*-chrysanthemate $1a_t$ in very good yield and reasonably high stereocontrol from each of the two stereoisomers (95% yield, d.e. 80%, Scheme 2).

We nevertheless suspected, because the 1,3-elimination reaction is not stereospecific as usual, ^{2d} that a non concerted mechanism is taking place and we therefore tried to identify an intermediate on which the stereochemical information present in 2'a is lost.

We in fact proved that ε-hydroxy-γ-alkenyl stannane **9'a** was produced, besides methyl *trans*-chrysanthemate **1a**_t (**9'a** / **1a**_t ratio : 40 / 60 (d.e. 84 %), Scheme 4), if the reaction was carried out at lower temperature (1.5 eq. BF₃-OEt₂, CH₂Cl₂, -78 °C). We also proved that this intermediate reacts with the same reagent at 20°C to generate, as in the case for **2'a**, the methyl *trans*-chrysanthemate **1a**_t in very good yield and high stereocontrol (95% yield, d.e. 78%, Scheme 4).

Download English Version:

https://daneshyari.com/en/article/5306315

Download Persian Version:

https://daneshyari.com/article/5306315

<u>Daneshyari.com</u>