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a b s t r a c t

To find the best partition of a large and complex network into a small number of clusters has been

addressed in many different ways. However, the probabilistic setting in which each node has a certain

probability of belonging to a certain cluster has been scarcely discussed. In this paper, a fuzzy

partitioning formulation, which is extended from a deterministic framework for network partition

based on the optimal prediction of a random walker Markovian dynamics, is derived to solve this

problem. The algorithms are constructed to minimize the objective function under this framework.

It is demonstrated by the simulation experiments that our algorithms can efficiently determine the

probabilities with which a node belongs to different clusters during the learning process. Moreover,

they are successfully applied to two real-world networks, including the social interactions between

members of a karate club and the relationships of some books on American politics bought from

Amazon.com.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years an explosive growth of interest and activity on
the structure and dynamics of complex networks [1–3] has
appeared. This is partly due to the influx of new ideas, particularly
ideas from statistical mechanics, to the subject, and partly due to
the emergence of interesting and challenging new examples of
complex networks such as the internet and wireless communica-
tion networks. Network models have also become popular tools
in social science, economics, the design of transportation and
communication systems, banking systems, powergrid, etc., due to
our increased capability of analyzing the models. On a related but
different front, recent advances in computer vision and data
mining have also relied heavily on the idea of viewing a data set
or an image as a graph or a network, in order to extract
information about the important features of the images or more
generally, the data sets [4,5].

To give a coarse definition about the study of complex
networks from the viewpoints of applied mathematics, it is about
the research of dynamical systems on graphs. The graph structure
may be fixed, or time-varying; the dynamical system may be
deterministic, or stochastic. Since these networks are typically
very complex, it is of great interest to see whether they can
be reduced to much simpler systems. Such issues have been
addressed before. In particular, much effort has gone into
partitioning the network into a small number of clusters [4–14].
And in a broader aspect, it is also closely related to the model

reduction theory of differential equations [15]. These proposals in
the literature are constructed from different viewing angles, and
their numerical performance applied to a benchmark model—
the ad hoc network with 128 nodes and known community
structures—are summarized in [16].

In a previous paper [12], a k-means approach is proposed to
partition the networks based on optimal prediction theory
proposed by Chorin and coworkers [17,18]. The basic idea is to
associate the network with the random walker Markovian
dynamics [19], then introduce a metric on the space of Markov
chains (stochastic matrices), and optimally reduce the chain
under this metric. The final minimization problem is solved by an
analogy to the traditional k-means algorithm [20,21] in clustering
analysis. This approach is motivated by the diffusion maps [11]
and MNCut algorithms in imaging science [4].

The current paper is along the lines of extending the k-means
type clustering techniques to the partitioning of networks. In
statistical literature, a widely used generalization of k-means
algorithm is the fuzzy c-means (FCM) algorithm [22,23]. In this
framework, each node has a certain probability of belonging to a
certain cluster, instead of assigning nodes to specific clusters,
which is called fuzzy clustering in some papers [14]. This idea is
quite valuable since usually it is not well separated for most of
networks and the extending fuzzy partitioning framework seems
extremely meaningful [13]. For the nodes lying in the transition
domain between different clusters, the fuzzy partition will be
more acceptable. To obtain the hard clustering result, one only
needs to threshold the weights. But the fuzzy clustering presents
more detailed information than the hard one, and it gives more
reasonable explanations in some cases.
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We constructed two algorithms—the steepest descent method
with projection (SDP) and the reduced conjugate gradient method
with projection (CGP)—from minimizing the objective function
under the generalized framework in this paper. According to two
choices of projection operators P1, P2, we obtain the formula-
tions—SDP1, SDP2, CGP1, CGP2—which have been applied to two
artificial networks, including the ad hoc network and the sample
network generated from Gaussian mixture model, as well as two
real-world networks, including the karate club network and the
political books network. The proposed algorithms are easy to be
implemented with reasonable computational effort and the final
results do make sense in the considered models. It is demon-
strated by these experiments that the algorithms can always
perform successfully during the learning process and lead to a
good clustering result.

The rest of the paper is organized as follows. In Section 2, the
hard partitioning framework based on the optimal prediction in
[12] is briefly introduced, and the corresponding fuzzy partition-
ing formulation is derived. The algorithms, SDP and CGP, are
described in detail in Section 3. Several simulation and practical
experiments are conducted in Section 4 to demonstrate the
efficiency of the proposed algorithms. The numerical results
and performance are typically compared. Finally, we conclude the
paper in Section 5. All details of the derivation are left in the
Appendix.

2. Framework for fuzzy clustering of networks

In [12], a new strategy for reducing the random walker
Markovian dynamics based on optimal prediction theory [17,18]
is proposed. Let GðS; EÞ be a network with N nodes and M edges,
where S is the nodes set, E¼ feðx; yÞgx;yA S is the weight matrix and
eðx; yÞ is the weight for the edge connecting the nodes x and y.
A simple example of the weight matrix is given by the adjacency
matrix: eðx; yÞ ¼ 0 or 1, depending whether x and y are connected.
We can relate this network to a discrete-time Markov chain with
stochastic matrix p with entries pðx; yÞ given by

pðx; yÞ ¼
eðx; yÞ

dðxÞ
; dðxÞ ¼

X
zAS

eðx; zÞ; ð1Þ

where dðxÞ is the degree of the node x [11,19,24]. This Markov
chain has stationary distribution

mðxÞ ¼ dðxÞP
zASdðzÞ

ð2Þ

and it satisfies the detailed balance condition

mðxÞpðx; yÞ ¼ mðyÞpðy; xÞ: ð3Þ

The basic idea in [12] is to introduce a metric for the stochastic
matrix pðx; yÞ

JpJ2
m ¼

X
x;yAS

mðxÞ
mðyÞ jpðx; yÞj

2 ð4Þ

and find the reduced Markov chain ~p by minimizing the distance
J ~p�pJm. For a given partition of S as S¼

SK
k ¼ 1 Sk with Sk \ Sl ¼ | if

ka l, let p̂kl be the coarse grained transition probability from Sk to
Sl on the state space S¼ fS1; . . . ; SKg which naturally satisfies

p̂klZ0 and
XK

l ¼ 1

p̂kl ¼ 1: ð5Þ

This matrix can be naturally lifted to the space of stochastic
matrices on the original state space S via

~pðx; yÞ ¼
XK

k;l ¼ 1

1Sk
ðxÞp̂klmlðyÞ; ð6Þ

where 1Sk
ðxÞ ¼ 1 if xASk and 1Sk

ðxÞ ¼ 0 otherwise, and

mkðxÞ ¼
mðxÞ1Sk

ðxÞ

m̂k

; m̂k ¼
X
zA Sk

mðzÞ: ð7Þ

Based upon this formulation, we can find the optimal p̂kl for any
fixed partition. With this optimal form p̂kl, we further search for
the best partition fS1; . . . ; SKg with the given number of clusters K

by minimizing the optimal prediction error. This is the theoretical
basis for constructing the k-means algorithm for network
partition in [12].

In the above formulation of hard clustering, each node belongs
to only one cluster after the partition. This is often too restrictive
for the reason that nodes at the boundary among clusters share
commonalities with more than one cluster and play a role of
transition in many diffusive networks. This motivates the
extension of the optimal partition theory to a probabilistic setting
[13]. Here we use the terminology hard clustering since we take
indicator function 1Sk

ðxÞ in Eq. (6) when the node x belongs to
the k-th cluster. Now it is extended to the fuzzy clustering
concept where each node may belong to different clusters
with nonzero probabilities at the same time. We denote such
probability function as rkðxÞ to represent the probability which
the node x belongs to the k-th cluster with. Naturally we need the
assumption that

rkðxÞZ0 and
XK

k ¼ 1

rkðxÞ ¼ 1 ð8Þ

for all xAS.
Similar as before, we define the transition probability matrix of

the induced Markov chain as

~pðx; yÞ ¼
XK

k;l ¼ 1

rkðxÞp̂klmlðyÞ; x; yAS; ð9Þ

where

mkðxÞ ¼
rkðxÞmðxÞ

m̂k

and m̂k ¼
X
zAS

rkðzÞmðzÞ: ð10Þ

The idea of lifting the size of stochastic matrices is similar as the
hard clustering case and it expresses the perspective that the node
x transits to y through different channels from cluster Sk to cluster
Sl with their corresponding belonging probability and stay there
in equilibrium state. It is not difficult to show that ~pðx; yÞ is indeed
a transition probability matrix and satisfies the detailed balance
condition with respect to m

mðxÞ ~pðx; yÞ ¼ mðyÞ ~pðy; xÞ ð11Þ

if p̂kl satisfies the detailed balance condition with respect to m̂,
that is

m̂kp̂kl ¼ m̂ lp̂ lk: ð12Þ

Given the number of the clusters K, we optimally reduce the
random walker dynamics by considering the following minimiza-
tion problem:

min
rkðxÞ; p̂kl

J¼ Jp� ~pJ2
m ð13Þ

where

J¼
X

x;yA S

mðxÞ
mðyÞ
jpðx; yÞ� ~pðx; yÞj2 ¼

X
x;yA S

mðxÞmðyÞ

�
XK

m;n ¼ 1

rmðxÞrnðyÞ
p̂mn

m̂n

�
pðx; yÞ

mðyÞ

 !2

; ð14Þ

subject to the constraints Eqs. (5) and (8).
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