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a b s t r a c t

The linear discriminant analysis (LDA) is a linear classifier which has proven to be powerful and

competitive compared to the main state-of-the-art classifiers. However, the LDA algorithm assumes the

sample vectors of each class are generated from underlying multivariate normal distributions of

common covariance matrix with different means (i.e., homoscedastic data). This assumption has

restricted the use of LDA considerably. Over the years, authors have defined several extensions to the

basic formulation of LDA. One such method is the heteroscedastic LDA (HLDA) which is proposed to

address the heteroscedasticity problem. Another method is the nonparametric DA (NDA) where the

normality assumption is relaxed. In this paper, we propose a novel Bayesian logistic discriminant (BLD)

model which can address both normality and heteroscedasticity problems. The normality assumption is

relaxed by approximating the underlying distribution of each class with a mixture of Gaussians. Hence,

the proposed BLD provides more flexibility and better classification performances than the LDA, HLDA

and NDA. A subclass and multinomial versions of the BLD are proposed. The posterior distribution of the

BLD model is elegantly approximated by a tractable Gaussian form using variational transformation and

Jensen’s inequality, allowing a straightforward computation of the weights. An extensive comparison of

the BLD to the LDA, support vector machine (SVM), HLDA, NDA and subclass discriminant analysis

(SDA), performed on artificial and real data sets, has shown the advantages and superiority of our

proposed method. In particular, the experiments on face recognition have clearly shown a significant

improvement of the proposed BLD over the LDA.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of supervised learning, given a training set
of input vectors fXig

N
i ¼ 1, where XiARk

ðkZ1Þ and iAf1;2; . . . ;Ng,
along with corresponding tags ftig

N
i ¼ 1, where tiAN and

iAf1;2; . . . ;Ng, we wish to learn a model of dependency of the
targets on the inputs. The final objective would be to be able to
make accurate predictions of t for unseen values of X. In the case of
real-world data, the presence of class overlap in classification
implies that the principal modelling challenge is to avoid over-
fitting of the training set. Typically, we base our predictions upon
some function yðXÞ defined over the input space (or training space)
X , and learning is the process of inferring the parameters or
weights of this function. We concentrate here on functions of the
type corresponding to those implemented by some relevant linear
models, such as, the support vector machine (SVM) [23] and the

linear discriminant analysis (LDA) [1,16]. The SVM and LDA make
predictions based on the function

yðX;wÞ ¼
Xk

i ¼ 1

wixiþw0; ð1Þ

where fxig
k
i ¼ 1 are the components of the vector X and fwig

k
i ¼ 0 are the

unknown weights to compute. In the last decades, a number of
powerful linear classifiers, such as SVM [23], LDA analysis [16] and
logistic regression (LR) [18], have been proposed in the machine-
learning community. However, except for the LDA, none of these
classifiers incorporates the probability distributions fitting the
transformed classes in order to avoid the noise in the data and
optimize the linear separability in the input space. In these methods,
it is not necessary to create representations or models for objects as
the model of a given object is implicitly defined by the selection of its
sample images. Unfortunately, these images are typically represented
in spaces that are too large to allow robust and fast object
recognition. In particular, the demand for a large number of training
samples to construct a ‘good’ Bayesian classifier is difficult to satisfy
due to the lack of training samples. To overcome this problem, the
LDA has emerged as a fairly decent alternative to Bayesian classifier
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[30]. The practical attractiveness of LDA can be explained by its
(intrinsically) low model complexity, and its ability to capture the
essential characteristics of the data distributions (mean and
covariance) from finite training data, and then estimating the
decision boundary using these ‘global’ characteristics of the data.
The LDA has proven to be powerful and competitive to several linear
classifiers [13]. Its main goal is to find linear projections such that the
classes are well separated, i.e., maximizing the distance between
means of classes and minimizing their intraclass variances. The LDA
was successfully applied in appearance-based methods for object
recognition, such as, face recognition [2] and mobile robotics [25]. In
fact, the success of LDA is partially due to the fact that only up to
second order moments (mean and covariance) of the class distribu-
tion are used in LDA. This approach is more robust than estimating
the distribution of the data. However, the LDA is incapable of dealing
explicitly with heteroscedastic data, i.e., data in which classes do not
have equal covariance matrices [16]. Moreover, most of the existing
LDA-based methods inherit the parametric nature from the tradi-
tional LDA approach: The construction of the scatter matrices relies
on the underlying assumption that the samples in each class satisfy
the Gaussian distribution. Thus, they suffer from performance
degradation in cases of non-normal distribution [5]. In addition,
the LDA suffers from the small sample size problem for applications
involving high-dimensional data [29]. Many methods have been
proposed to address the small sample size problem [2,29,16,1,27,17].
Mika et al. [16] proposed adding a small multiple of the identity
matrix to make the within-scatter matrix invertible. In [1,27,17], the
authors used QR and generalized singular value decompositions to
avoid the singularity of the within-scatter matrix. The proposed
method in [2] has overcome the complication of a singular within-
scatter matrix by reducing the dimension of the feature space using
principal component analysis (PCA). Yu and Yang have proposed in
[29] a direct LDA which allows a simultaneous diagonalization of the
within-scatter matrix and between-scatter matrix. To overcome the
heteroscedasticity problem, Loog and Duin [14] proposed the
heteroscedastic LDA (HLDA) which is an heteroscedastic extension
of the Fisher criterion and based on the Chernoff distance. To relax
the normality assumption, Fukunaga [5] proposed the nonparametric
DA (NDA) which is based on a new definition for the between-class
scatter matrix, which explicitly emphasizes the samples near
boundary. Unfortunately, none of the above methods is capable to
overcome all these three problems simultaneously i.e., the small
sample size, normality and heteroscedasticity.

In this paper, we propose a novel Bayesian logistic discriminant
(BLD) model that avoids the small sample size problem by using a
sparsity-promoting Gaussian prior over the unknown parameters or
weights. This model is considered as a significant extension and
improvement of the model proposed by [12]. In fact, a sparsity-
promoting Gaussian is used to avoid the small size problem.
Moreover, novel subclass and multinomial versions of the model
are proposed to address the problems posed by nonlinearly separable
classes and to perform polychotomous classification. Furthermore,
each class is represented by its own Gaussian mixture distribution to
solve both normality and heteroscedasticity problems targeted by
the NDA and HLDA, respectively. In fact, in most real-world problems
the form of each class pdf is a priori unknown, and the selection of
the DA algorithm that best fits the data is done over trial-and-error.
Ideally, one would like to have a single formulation which can be
used for most distribution types. This can be achieved by
approximating the underlying distribution of each class with a
mixture of Gaussians. This can allow more robustness against the
noise in the data, optimal linear transformation that maximizes the
class separability in the input space and more flexibility and better
classification performances than the LDA, HLDA and NDA. The
objective or ‘likelihood’ function of our model has no tractable form.
For this reason, variational transformation and Jensen’s inequality are

used to approximate it with a tractable exponential form which
depends only on two variational parameters. Due to the conjugacy,
by combining a sparsity-promoting Gaussian prior with the like-
lihood approximation, we have obtained a close Gaussian form
approximation to the posterior distribution of the model. We have
particularly targeted the face recognition problem as an application
of interest to our proposed model given that it has become one of the
most challenging tasks in the pattern recognition area [10].
Furthermore, face recognition is also central to many other
applications such as video surveillance and identity retrieval from
databases for criminal investigations.

This paper is organized as follows. Section 2 details the
derivation of the BLD and defines the procedure for obtaining
variational parameters, prior parameter values and the weights. A
brief analysis of the complexity and numerical accuracy of the BLD
is provided. Furthermore, a subclass and multinomial versions
of the BLD are proposed to address the problems posed by
nonlinearly separable classes and to perform polychotomous
classification, respectively. Section 3 provides a comparative
evaluation of the BLD to the LDA, SVM [23], HLDA [14], NDA [5]
and SDA [31], carried out on a collection of benchmark synthetic
and real data sets. Experiments on face recognition are also
provided. The conclusion is presented in Section 4.

2. The Bayesian logistic discriminant model

2.1. Definition of the derivation of the BLD model

The idea of the LDA analysis is to solve the well-known problem of
Fisher’s linear discriminant in the input space. In the linear case,
Fisher’s discriminant aims at finding linear projections such that the
classes are well separated, i.e., maximizing the distance between
means of the classes and minimizing their intraclass variances.
Implicitly, the LDA purpose is to find the most discriminative linear
projections of the Gaussian distributions modelling the classes in the
input space. This can be achieved by maximizing the Rayleigh
coefficient (the ratio of the between-scatter matrix against the
within-scatter matrix) with respect to the weights [16]. However,
according to the form of the Rayleigh coefficient, the classes are
assumed to be normally distributed with equal covariance structure,
which is not true in many real-world applications. To overcome this
problem, instead of using Rayleigh coefficient, a novel objective or
‘likelihood’ function is proposed that represents each class by its own
Gaussian mixture distribution. Although the proposed objective
function is theoretically different from the Rayleigh coefficient, it has
the same purpose. Let X1 ¼ fXig

N1

i ¼ 1 and X2 ¼ fXig
N
i ¼ N1þ1 be two

different classes constituting an input space of N samples or vectors
in RM . Let us denote by x1 and x2 two random vectors whose
realizations represent the classes X1 and X2, respectively. We
suppose that x1 �Mg1ðx1Þ and x2 �Mg2ðx2Þ, where Mg1 and Mg2

are two different Gaussian mixture distributions modelling X1 and
X2, respectively. The unknown parameters of Mg1 and Mg2 are
estimated by the EM algorithm [4] and their component numbers are
selected using the minimum message length (MML) validity
function, as it has been shown to give good results in [20]. Let x1

be associated the tag t0 ¼ 0 and x2 be associated the tag t0 ¼ 1. The
unknown parameters (weights) are considered random variables and
are denoted by the random vector w¼ ðw0;w1; . . . ;wNÞ. The ‘like-
lihood’ function is defined as

Pðt0 ¼ 0; t0 ¼ 1jwÞ ¼
X

x1 AX1 ;x2 AX2

Y2

i ¼ 1

Pðt0 ¼ i� 1jxi;wÞMgiðxiÞ

" #
; ð2Þ

where, given FðxÞ ¼ ex=ð1þexÞ, the probabilities Pðt0 ¼ i� 1jxi;wÞ ¼
Fðð2i� 3ÞwT xiÞ, iAf1;2g represent the logistic modellings of t0 ¼ 0
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