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a b s t r a c t

We introduce a novel Bayesian inexact point pattern matching model that assumes that a linear
transformation relates the two sets of points. The matching problem is inexact due to the lack of one-to-
one correspondence between the point sets and the presence of noise. The algorithm is itself inexact; we
use variational Bayesian approximation to estimate the posterior distributions in the face of a
problematic evidence term. The method turns out to be similar in structure to the iterative closest
point algorithm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Point pattern matching (also referred to as point set matching
or point set registration) is a common pattern recognition problem
that arises in many different fields, but perhaps particularly from
the increasing use of automatic image processing techniques (e.g.
[1–4]). A set of feature points is extracted from each of two similar
images (possibly two frames of a video) and the aim is to determine
correspondences between the two sets. Often it is assumed that the
two sets are related through some linear transformation and any
deviations from that are regarded as noise.

We denote the two sets of points as Y¼ fyig and X¼ fxjg, where
each point is represented by its location in D-dimensional Eucli-
dean space. The points do not have identities, or at least the
identities are not known, and the sets of points are unordered, that
is yn does not necessarily correspond to xn for any n.

In the simplest, exact case, each point set contains the same
number of points and there is an exact one-to-one correspondence
between them, with no noise. Thus we have the case that Y ¼ f ðXÞ,
where the function f ð�Þ permutes the points in X and linearly
transforms their coordinates so that they precisely coincide with
the points in Y. However, the nature of real problems and the
automated processes by which features are often extracted, often
result in the inexact case, where the point sets do not exactly
correspond, both because of noise and because each set contains

points with no counterpart in the other. In this case Y and X may
contain different numbers of points and, with Ys as a subset of the
points in Y and Xs as a same-sized subset of the points in X, we
have Ys ¼ f ðXsÞþnoise. We refer to the points in Ys and their
counterparts in Xs as the overlap between the two sets.

The inexact problem has been shown to be NP-complete [5],
that is the computation time required to find the global optimum
increases exponentially with the number of points. Many methods
therefore (including the one described in this paper) aim to find
local optima in more acceptable time-frames.

Bottom-up approaches to this problem search directly for
plausible point matches. In tree search algorithms with back-
tracking, for example, a partial (initially empty) set of mappings is
progressively augmented with new mappings until a constraint is
violated. The algorithm then backtracks, i.e. removes mappings,
until some alternative route is available. Conte et al. [6] provide a
useful overview of a number of important algorithms. In contrast,
the top-down approach aims to determine the geometric trans-
formation which relates the two point sets and uses that to find
the point mappings. The iterative closest point (ICP) algorithm
[1,7], for example, starts with an initial estimation of the point
mappings, from which it estimates the parameters of a rigid
transformation (rotation and translation) using a least squares
method. The set of point mappings is recalculated based on this
new estimate of the transformation. The process repeats the
transformation–estimation and point-mapping steps iteratively
until convergence.

We introduce an approximate Bayesian model for inexact point
pattern matching which, due to the necessity of avoiding a
problematic likelihood term, turns out to be similar in structure
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to ICP. We assume that the two point sets are related by a linear
transformation and explicitly model each of its parameters, and
the noise, as random variables. This allows us to incorporate prior
knowledge about the transformation and provides estimates of the
confidence intervals in the posterior distributions for each vari-
able. We also end up with probabilities associated with every
potential match; these provide a principled method for determin-
ing both the point mappings and which points in each set are
unmatched. As with many Bayesian models, the integrals required
for exact inference are intractable and so we use a variational
approximation method [8–11]. This method minimises the Kull-
back–Leibler divergence [12,13] between the approximate and
actual posterior distributions to determine the optimal hyperpara-
meter values for the approximations. Interdependencies between
the expressions for the posterior parameters in the variational
scheme lead to an iterative update procedure which naturally
results in an ICP-like update-remap process.

We start by examining different approaches to probabilistic
modelling in inexact point pattern matching and the more gen-
eralised problem of graph matching, and Bayesian approximation.
The new model is described in Section 2 in terms of 3-dimensional
point sets, though it is easily extended to lower or higher
dimensionalities. Section 3 describes the results obtained from
synthetic data and in Section 4.2 the method is demonstrated on a
real problem of matching cartilage cells in image stacks captured
before and after a stretch is applied to the cartilage and the
position and orientation of the sample in the microscope's viewing
window is changed.

1.1. Probabilistic approaches in point set matching

Many inexact matching algorithms relax the tight constraints
imposed on exact matching by calculating a cost associated with
that relaxation; the larger the deviation the higher the cost and
hence the aim is to minimise the total cost. Cost calculations often
explicitly define different types of constraint violation and specify
heuristically established costs with each of them. The tree search
Attributed Relational Graphs algorithm [14], for example, bases the
cost on graph edit operations of node and edge substitution.

An intuitive alternative to cost minimisation is probability
maximisation. Continuous optimisation approaches to point pat-
tern matching start with an initial guess at the mappings which is
then refined over successive iterations. One such method is
relaxation labelling [15,16], where each point in one set is assigned
a vector containing the probabilities that the point is mapped to
each of the points in the other set. These probabilities are
initialised heuristically and then refined by taking into account
the probabilities associated with adjacent points. At the end the
maximum probability mapping is selected.

Relaxation labelling only enforces one-to-one correspondence
in one direction. Weighted Graph Matching (e.g. [17,18]) is a
quadratic optimisation method that allows two-way enforcement
by way of a matching matrix of probabilities. The graduated
assignment graph matching algorithm [19] gradually increases
the constraints on the matching matrix to avoid poor local optima.

Although these models use probability measures, they might
not be considered to be probabilistic models. A number of
different probabilistic modelling approaches have been consid-
ered, using iterative expectation maximisation (EM) algorithms to
find maximum likelihood solutions. Luo and Hancock [20] con-
sider one set of points to be latent variables and the other to be
observations, casting the problem as a Markov random field.
Granger and Pennec [21] define a probabilistic ICP model based
on a rigid transformation and a binary matching matrix, which is
considered to be a latent variable. They use an annealing scheme
to improve the reliability with which the global optimum is found.

Jian and Vemuri [22,23] and Myronenko and Song [24] represent
the two sets of points as Gaussian mixture models and maximise
the likelihood of the point mappings. Xiao et al. [25] use a hidden
Markov model to model the distribution of points in each of the
sets and minimise the dissimilarity between the two models by
minimising the Kullback–Leibler divergence between them. Serra-
dell et al. [4] use a tree search algorithmwith backtracking to learn
an affine transformation that approximately aligns the two point
sets as a starting point for modelling the localised perturbations as
Gaussian Processes. The update of the affine transformation
estimate is performed using a process similar to the Kalman filter.

A fully Bayesian technique avoids the pitfalls associated with
the maximum likelihood method: integrating (averaging) over all
possible values of the parameter variables guards against over-
fitting and posterior probability distributions (rather than point
estimates) are calculated for each of them, fromwhich we obtain a
measure of confidence in the inference.

Zhu et al. [26] note that although ICP has been widely used for
problems where the transformation is rigid, it does not work well if
the transformation is, for example, affine. Du et al. [27] incorporate the
affine transformation into ICP and use an iterative quadratic program-
ming method to converge on a local optimum. They decompose the
transformation matrix into three using singular value decomposition
and then constrain these matrices to try and avoid the problem that
the most likely transformation maps all of the points in one set onto a
very small subset (often a single point) of the other set. Zhu et al. [26]
avoid this problem by defining the mappings bidirectionally.

We represent each of the parameters of the linear transforma-
tion as separate random variables and use prior probability
distributions to constrain them, both so that we may incorporate
our prior knowledge about the likely transformation and to avoid
the degenerate case described above. Point mappings are derived
from a matching matrix containing probabilities for all possible
mappings and from this we may also estimate which points in
each set are unmapped.

As is often the case, calculation of the evidence or marginal
likelihood for our Bayesian model is intractable, so we must
resort to some approximation scheme. With a large number of
variables, numerical methods, such as quadrature [28], are not
feasible and sampling methods such as the Markov chain Monte
Carlo algorithms of Metropolis–Hastings [29,30] and Gibbs sam-
pling [31] (e.g., [2]) or particle filtering [32] (e.g., [3]) are too
computationally expensive. Instead we estimate the posterior
distributions using variational Bayesian approximation, which
we describe in Section 2.2.

2. The model

We describe the model here in terms of 3-dimensional space; it
is easily extended to spaces of lower or higher dimensionality.

Without loss of generality let Y be the smaller of the two sets
and each set be independently mean-centred such that

∑
Ny

i ¼ 1
yi ¼ ∑

Nx

j ¼ 1
xj ¼ 0 ð1Þ

where Ny and Nx are the numbers of points in Y and X respectively.
We denote a match between point yi and point xj as yi2xj. In our
scheme we assume that every point in Y is matched to a unique
point in X and that the relationship between each pair of matched
points is that of a linear transformation plus noise, encapsulated in
the following expression:

yi ¼Wxjþtþϵi;j ð2Þ
The translation component of the linear transformation is modelled by
t; other components are captured in W. These are considered to be
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