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a b s t r a c t

In this paper, we propose a novel framework for multi-label classification, which directly models the
dependencies among labels using a Bayesian network. Each node of the Bayesian network represents a
label, and the links and conditional probabilities capture the probabilistic dependencies among multiple
labels. We employ our Bayesian network structure learning method, which guarantees to find the global
optimum structure, independent of the initial structure. After structure learning, maximum likelihood
estimation is used to learn the conditional probabilities among nodes. Any current multi-label classifier
can be employed to obtain the measurements of labels. Then, using the learned Bayesian network, the
true labels are inferred by combining the relationship among labels with the labels' estimates obtained
from a current multi-labeling method. We further extend the proposed multi-label classification method
to deal with incomplete label assignments. Structural Expectation-Maximization algorithm is adopted
for both structure and parameter learning. Experimental results on two benchmark multi-label
databases show that our approach can effectively capture the co-occurrent and the mutual exclusive
relation among labels. The relation modeled by our approach is more flexible than the pairwise or fixed
subset labels captured by current multi-label learning methods. Thus, our approach improves the
performance over current multi-label classifiers. Furthermore, our approach demonstrates its robustness
to incomplete multi-label classification.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label classification is a classification problem where one
sample can be assigned with more than one target labels simulta-
neously. There are many multi-label learning applications. For
example, a piece of music may be characterized by both dreamy
and cheerful [1]. An image may include grass, cow and sky [2].
Hence, a data sample (image or music) may simultaneously contain
multiple different labels that characterize different properties of
the data.

Usually the labels are dependent on each other. Take music
emotional tagging for example, some emotions may appear together
frequently, while others may not. A piece of music may induce the
feelings of relaxing, comfortable and happy, but it rarely induces
disgust at the same time. Such dependencies among labels are one of
the key issues in multi-label learning. Current research can be

divided into three groups: ignoring dependencies, exploring depen-
dencies directly only from labels, and exploring label dependencies
indirectly with the help of features or hypotheses. The first group
takes no account of the relation among labels, it therefore suffers
from unstable performance. The second group considers pairwise
relation, or the fixed label combinations present in training data
directly from labels without considering features or hypotheses.
However, the dependencies among multiple labels are more complex
and flexible, beyond pairwise and fixed label combinations. In fact,
there are two kinds of relationship: co-existence and mutual exclu-
sion. For example, in music emotional tagging, a piece of sad music
may elicit both sadness and anger but rarely happiness, which
reflects the co-existent relation between sadness and anger, and
the mutual exclusive relation between sadness and happiness. Thus,
the second group cannot fully explore the feasible dependencies
among labels. The third group can model more feasible label relation
with the aid of features and hypotheses. However, its computation
cost is much higher than the first two groups.

Furthermore, since annotating labels is time confusing and
require expertise, labels may be missing for some applications.
For example, because of difficulty with annotating certain labels,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2014.04.009
0031-3203/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 551 63602824.
E-mail addresses: sfwang@ustc.edu.cn (S. Wang),

junwong@mail.ustc.edu.cn (J. Wang), wazhy@mail.ustc.edu.cn (Z. Wang),
qji@ecse.rpi.edu (Q. Ji).

Pattern Recognition 47 (2014) 3405–3413

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.04.009
http://dx.doi.org/10.1016/j.patcog.2014.04.009
http://dx.doi.org/10.1016/j.patcog.2014.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.04.009&domain=pdf
mailto:sfwang@ustc.edu.cn
mailto:junwong@mail.ustc.edu.cn
mailto:wazhy@mail.ustc.edu.cn
mailto:qji@ecse.rpi.edu
http://dx.doi.org/10.1016/j.patcog.2014.04.009


annotators may only provide the main emotion of a piece of music,
and users may tag an image just with several main objects.
Therefore, learning from incomplete labels is another key issue
for multi-label classification. However, current multi-label classi-
fication research rarely addresses learning from incomplete labels.

In this paper, we propose a Bayesian Network (BN) to system-
atically capture the dependencies among different labels directly.
The nodes of the BN represent the labels. The links and their
parameters capture the probabilistic relation among labels. Our
structure learning algorithm [3] is employed to learn the BN
structure. By exploiting the decomposable property of the Baye-
sian Information Criterion (BIC) score function, the algorithm
significantly reduces the search space of possible structures and
guarantees the global optimality. After structure learning, the
conditional probabilities are directly learned on the training data.
Then, we can infer the true labels by instantiating the measure-
ment nodes with the labels' estimates obtained from a traditional
multi-labeling method. The experimental results on two multi-
label datasets show that both the co-occurrent and the mutual
exclusive relation among labels can be effectively captured by our
structure learning algorithm. The relation modeled by our
approach is more flexible than pairwise or fixed subset labels
captured by current multi-label learning methods, it improves the
performance of current multi-label classifiers which model label
dependence directly. Furthermore, we extend our approach to deal
with incomplete labels by using structural Expectation-
Maximization (EM) algorithm. The experimental results on the
same two multi-label datasets show the advantage of our method.

2. Related work

Multi-label classification methods can be categorized into two
groups: problem transformation methods and algorithm adapta-
tion methods. The former includes Binary Relevance (BR) [4], Label
Powerset (LP) [4], and Random k labelsets (RAkEL) [5]. They
transform the multi-label classification task into one or more
single-label classification tasks, and then any traditional classifica-
tion algorithms can be used. The latter consists of Binary Rele-
vance k Nearest Neighbors (BRkNN) [6], Multi-Label k Nearest
Neighbors (MLkNN) [7], AdaBoost.MH [8], etc. They extend specific
learning algorithms to handle multi-label data directly. A compre-
hensive overview of current research in multi-label classification
can be found in [9,10].

Due to the large number of possible label sets, multi-label
classification is rather challenging. Successfully exploiting the
dependencies inherent in multiple labels is the key to facilitate
the learning process. Considering dependencies among labels,
most present multi-label learning strategies can be categorized
into three groups: methods ignoring label correlation, methods
considering label correlation directly, and methods considering
label correlation indirectly. The first group (i.e., BR [4]) decom-
poses multi-label problem into multiple independent binary
classification problems (one per category). By ignoring the correla-
tion among labels, the generalization ability of such method may
be weak. The second group addresses the pairwise relation
between labels (such as Calibrated Label Ranking (CLR)), or the
fixed label combinations existing in training data (such as LP), or a
random subset of the combinations (such as RAkEL)). However, the
relation among labels may be beyond pairwise, and cannot be
expressed by a fixed subset of labels existing in training data.
Besides, the number of the pairwise subsets increases exponen-
tially when the number of the labels is quite large. Meanwhile,
there may not be sufficient training data when there are few
instances for the combined labels. Thus, the second group may not
capture the label relation effectively. The third group considers

label dependencies with the help of features or hypothesis. God-
bole and Sarawagi [11] stacked the outputs of BR along with the
full original feature space into a separate meta classifier, creating a
two-stage classification process. Read et al. [12] proposed the
classifier chain model to link n classifier into a chain. The feature
space of each classifier in the chain is extended with the label
associations of all previous classifiers. Ghamrawi and McCallum
[13] adopted conditional random field to capture the impact of an
individual feature on the co-occurrence probability of a pair of
labels. Sun et al. [14] proposed to construct a hyperedge for each
label, and include all instances annotated with a common label
into one hyperedge, thus capturing their joint similarity. Zhangs
[15] proposed Bayesian Network to model the dependencies
among label errors, and then a binary classifier was constructed
for each label combining the features and the parental labels,
which were regarded as additional features. Huang et al. [16]
modeled the label relation by a hypothesis reuse process. When
the classifier of a certain label is learned, all trained hypotheses
generated for other labels are taken into account via weighted
combinations. These methods can model the flexible dependen-
cies among labels to some extent, but their computation costs are
usually much higher compared with the second group.

Among the above, Zhangs' work is the most similar one to ours.
They proposed to use a Bayesian Network (BN) structure to encode
the conditional dependencies of labels as well as the feature set:
Pðλ1; λ2;…; λnjxÞ, where x is the features and ðλ1; λ2; …; λnÞ is the
multiple target labels, n is the number of labels. Since they thought
directly modeling Pðλ1; λ2;…; λnjxÞ by Bayesian approach was
intractable, they adopted an approximate method to model the
dependencies among label errors, which was independent of
features x. Based on the learned BN structure of errors, a binary
classifier was constructed for each label λi combining the features x
and the parental labels paðλiÞ, which were regarded as additional
features.

Unlike Zhangs' method, we propose a Bayesian Network to
systematically capture the dependencies among different labels,
Pðλ1;…; λnÞ, directly. The nodes of the BN represent the labels.
The links and their parameters capture the probabilistic relation
among labels. Our BN structure learning algorithm [3] is
adopted. After structure learning, maximum likelihood estima-
tion is used to learn the conditional probabilities. Then, we can
infer the true labels by instantiating the measurement nodes
with the labels' estimates obtained from a traditional multi-
labeling method.

Compared to Zhangs' method, we first directly capture the
dependencies among labels. Then we obtain label measurements,
Mλi, using any multi-label classifier. After that, we infer an
instance's multiple labels simultaneously using Most Probable
Explanation (MPE) inference: Pðλ1;…; λnjMλ1;…;MλnÞ ¼ PðMλ1;
…;Mλnjλ1;…; λnÞPðλ1;…; λnÞ=PðMλ1;…;MλnÞ. Thus, our approach
can explicitly model the co-existent and the mutual exclusive
relation among labels, instead of the errors of the labels. Besides,
our approach can infer the multiple labels of an instance simulta-
neously, not recognize each label separately. Our approach can be
easily combined with any multi-label classifier to enhance its
performance.

Current multi-label classification methods require complete
label assignments. However, multi-label classification with incom-
plete label assignments is frequently encountered in realistic
scenario, especially when the number of labels is very large. Till
now, little research [17] has addressed the challenge of multi-label
classification with incomplete labels [18].

In this paper, we propose a BN to systematically capture the
dependencies among labels directly. Furthermore, we extend our
approach to address multi-label classification with incomplete
labels using a structural EM algorithm.
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