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ABSTRACT

This paper first proposes a new type of single-output Chebyshev-polynomial feed-forward neural
network (SOCPNN) for pattern classification. A new type of multi-output Chebyshev-polynomial feed-
forward neural network (MOCPNN) is then proposed based on such an SOCPNN. Compared with multi-
layer perceptron, the proposed SOCPNN and MOCPNN have lower computational complexity and
superior performance, substantiated by both theoretical analyses and numerical verifications. In
addition, two weight-and-structure-determination (WASD) algorithms, one for the SOCPNN and another
for the MOCPNN, are proposed for pattern classification. These WASD algorithms can determine the
weights and structures of the proposed neural networks efficiently and automatically. Comparative
experimental results based on different real-world classification datasets with and without added noise
prove that the proposed SOCPNN and MOCPNN have high accuracy, and that the MOCPNN has strong
robustness in pattern classification when equipped with WASD algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern classification is one of the most important areas of
artificial intelligence [1-7]. In recent years, artificial neural net-
works have become powerful tools for pattern classification
because of their remarkable features, such as nonlinear system
modeling, self-learning, and self-adaptive capabilities [3-7]. The
back-propagation (BP) neural network first proposed by Rumel-
hart and McClelland [8] is one of the most widely applied neural
network models [7,9]. However, BP-type neural networks have
inherent weaknesses such as slow convergence [10] and the
existence of local minima [11]. Different from algorithmic
improvements on the BP iterative-training procedure, activation
function and network structure improvements are the focus of this
paper, with the goal of achieving better efficacy [12-14]; one
example of such structure improvements is the use of orthogonal
polynomial neural networks [13,14].

Chebyshev polynomials, a sequence of orthogonal polynomials,
are frequently used in various applications. Recently, different kinds
of Chebyshev-polynomial-based neural networks have been devel-
oped for function approximation [12,15-17], pattern classification
[18,19], and nonlinear system identification [20]. Our previous
studies have found that a Chebyshev-polynomial-based neural net-
work performs effectively in approximation, generalization, and
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prediction [13,14]. Therefore, Chebyshev polynomials have been
chosen as the basis for activation-function construction in this paper.
In light of the theories of Bernstein polynomial [21,22] and orthogo-
nal polynomial approximation [12,15], a group of Chebyshev-
polynomial-based basis functions are constructed in this paper for
data approximation. A three-layer feed-forward neural network
(including the input, hidden, and output layers) can approximate
nonlinear continuous functions effectively [23,24]. Thus, a new type
of single-output Chebyshev-polynomial feed-forward neural network
(SOCPNN) that adopts a three-layer structure is proposed in this
paper for pattern classification. The hidden-layer neurons of the new
SOCPNN are activated by the Chebyshev-polynomial-based basis
functions. The proposed SOCPNN can achieve satisfactory prediction
performance in handling high-dimensional data. Based on the new
SOCPNN, a new type of multi-output Chebyshev-polynomial feed-
forward neural network (MOCPNN), which is a generalized form of
the SOCPNN, is constructed for pattern classification. This new
MOCPNN can also achieve satisfactory prediction performance. The
proposed SOCPNN and MOCPNN have low computational complex-
ity, making them alternatives for pattern classification. Weights and
structures significantly influence the neural network performances of
a feed-forward neural network. Thus, one important issue is design-
ing effective and efficient algorithms to determine the appropriate
weights and structures for the SOCPNN and MOCPNN such that their
superior characteristics can be fully used in pattern classification.
Two types of learning algorithms are frequently used for
weights learning, namely, the BP (or termed, gradient-based)
type and the gradient-free type. However, the BP-type algorithm
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has inherent weaknesses, such as slow convergence and local
minima, as mentioned previously. In addition, the efficacy of the
BP-type algorithm is significantly related to the initial values of the
parameters. By contrast, the gradient-free algorithm based on
pseudoinverse, known as the least square (LS) method, the
weights-direct-determination (WDD) method [12-14], or the
extreme learning machine (ELM) [25], determines the optimal
weights for the neural network efficiently with satisfactory or even
superior performance. The WDD method has been proposed for
neural networks activated by linearly independent functions,
particularly for orthogonal polynomial neural networks, where
the weights that link the input and hidden layers (i.e., input
weights) and the hidden-layer biases can be fixed [12-14]. Mean-
while, the ELM has been proposed for single-hidden layer feed-
forward neural networks; for example, the sigmoidal-function
neural networks, where the input weights and hidden-layer biases
are chosen randomly [25]. Thus, the WDD method presented in
[12-14] has been chosen to obtain the optimal weights between
the hidden-layer and output-layer neurons of the SOCPNN and
MOCPNN so that the weight-learning process can be more
efficient, stable, and automatic.

As pointed out in [3], the performances of approximation and
generalization are probably the most significant features of neural
networks for pattern classification. Studies have shown that the
performances of neural networks on approximation and general-
ization are considerably affected by the number of hidden-layer
neurons [26-29]. On the one hand, neural networks with extremely
few hidden-layer neurons may not be able to adjust themselves to the
underlying complex model of real-world data. On the other hand, too
many hidden-layer neurons may lead to an overfitting problem, in
which these neural networks can perform excellently on approxima-
tion but perform poorly on generalization. Based on a number of
numerical investigations (some of which are presented in Section 4.3),
we found that the aforementioned phenomena exist in the proposed
SOCPNN and MOCPNN. That is, the performances of two such neural
networks are significantly affected by the number of their hidden-
layer neurons. Therefore, developing an effective method is essential
to determine the structures of the SOCPNN and MOCPNN with
appropriate numbers of hidden-layer neurons. Recent studies have
shown that the multi-fold cross-validation (MFCV) method is effective
for model selection [31-33]; for example, using the MFCV method to
select appropriate parameter values for radial-basis-function neural
networks [32,33]. In light of the basic idea of the MFCV method [30-
33], the four-fold cross-validation (4FCV) method is exploited specifi-
cally to determine the appropriate numbers of hidden-layer neurons
for the SOCPNN and MOCPNN.

Based on the WDD and 4FCV methods, two weight-and-
structure-determination (WASD) algorithms, one for the SOCPNN
and another for the MOCPNN, are proposed. These WASD algo-
rithms can determine the weights and structures of the neural
networks efficiently and automatically. Moreover, comparative
experiment results based on different real-world classification
datasets with and without noise added further substantiate that
the SOCPNN and MOCPNN possess high accuracy, and that the
MOCPNN is robust in pattern classification when equipped with
WASD algorithms.

The remainder of this paper is organized into five sections.
Section 2 presents the theoretical basis for constructing the
SOCPNN and MOCPNN. In Section 3, models of the SOCPNN and
MOCPNN are constructed in detail. The corresponding analyses of
their computational complexities are provided as well. Section 4
proposes the WASD algorithms for the SOCPNN and MOCPNN. In
Section 5, comparative experimental results are presented to
substantiate the efficacy and superiority of the proposed SOCPNN,
MOCPNN, and WASD algorithms for pattern classification. Section
6 concludes this paper.

2. Theoretical basis

This section presents the theoretical basis for constructing the
SOCPNN and MOCPNN. As basis for further discussion, the defini-
tion of Chebyshev polynomials is given as follows [15,16]:

Definition 1. For the variable x e [—
can be defined as follows:

@i 2(X) =2X@; 1 (X)—@i(x) with gg(x)=1 and ¢@;(x)=x,

where @;(x) denotes the Chebyshev polynomial of degree i (with
i=01,...).

1, 1], Chebyshev polynomials

Based on the theory of orthogonal polynomial approximation
[12,15], an unknown target function p(x) with xe[—1,1] can be
approximated by a group of Chebyshev polynomials as follows:

1
p(x)~ go aip;(x), M

where q; is the weight for ¢;(x) and I is the total number of
Chebyshev polynomials used to approximate the target function p
(x). Notably, I should be sufficiently large.

For a continuous real-valued function f{X) with N variables,
where X:=[x; x2---xy]" €[0, 1V*! with superscript T denoting the
transpose operator, the Bernstein polynomial can be constructed
as follows:

BLy(X) = zo > b,....gyDg, (X1)Dg, (XN).
&1 = gv=0

where

—f(& 8N — (G & (1 _x )Gt
b0 =f (G 2. pg,,(xn)—<gn)x§ (1=x2)
(withn=1,2,...,N),

and G) =G!/(g,(G—gp)!) denotes a binomial coefficient [21,22].

According to (1), each function in {p, (x,)n=1,2,...,N} can be
approximated by Chebyshev polynomials; for example Pg, (Xn) ~
Zf’n’gj o®inng, @i, (Xn), with n=12,..N. Thus, let Py g X)=
DPg, (X1)--Dg, (xn); then, the following can be obtained:

l‘gl INgN
Pg . g X)~ < > a4, 1g1§0zl(xl)> ( > axNNgN¢zN(XN)>

= in=0

Iig, IN,gN

Z Z i1,

11_0 in=0

Uiy Ngy @i, X1)* @i (XN)-

Therefore, the Bernstein polynomial BfG’N(X) can be approximated
by Chebyshev polynomials as follows:

O S DeranPersnX)
g =0 gy=
'(max) Itmaxi
2 Wn 1N¢il(xl)"'¢iN(xN)a
ih=0 iy =

where w; ;. is the weight for ¢; (x1)--¢; (xy), and
1% — max({l,o,...,Inc} (withn=1,2,. N)

References [21,22] have shown that X)—f(X) uniformly on
X e[0,11V! as G- oo, i.e., f(X) = limg_, o B}V ~(X). Based on such an
important result, with G being a sufﬁc1ently large value, the
following can be obtained:

'(max) 'mmx;

FOORBL0~ T - 3wy

ih=0 iv=0

iy @i, (X1)+ @i (XN).

Thus, the continuous real-valued target function f{X) defined at
X e[0,1"*1 can be best estimated through the optimal weights
{wi, iy} corresponding to the basis functions {¢; (x1)---@;, (Xn)}.
Among the numerous choices of total orders for polynomials in
several variables [34], the graded lexicographic order is employed
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