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a b s t r a c t

In this article, a proximity fuzzy framework for clustering relational data is presented, where the

relationships between the entities of the data are given in terms of proximity values. We offer a

comprehensive and in-depth comparison of our clustering framework with proximity relational

knowledge to clustering with distance relational knowledge, such as the well known relational Fuzzy

C-Means (FCM). We conclude that proximity can provide a richer description of the relationships

among the data and this offers a significant advantage when realizing clustering. We further motivate

clustering relational proximity data and provide both synthetic and real-world experiments to

demonstrate both the usefulness and advantage offered by clustering proximity data. Finally, a case

study of relational clustering is introduced where we apply proximity fuzzy clustering to the problem

of clustering a set of trees derived from software requirements engineering. The relationships between

trees are based on the degree of closeness in both the location of the nodes in the trees and the

semantics associated with the type of connections between the nodes.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Relational clustering problems are increasingly encountered in a
number of different applications, cf. [1–13]. It is common to identify
clustering problems where data are vectors positioned in a
d-dimensional feature space X ¼ fx1,x2,. . .,xNg �Rd. An area that is
gaining interest is relational clustering, where the entities (i.e.,
objects) to be clustered are not vectors themselves but rather are
described in terms of relational knowledge between objects. Follow-
ing similar notation as presented in [2], we denote these objects by
X¼{O1,O2, y, ON}, which may or may not have a numerical
representation in a feature space. Hathaway, et al., introduced
relational knowledge coming in the form of a fuzzy binary relation
called r(xi,xj), i.e. r : X � X/½0,1�. There are many interesting
applications of relational clustering as well, cf. [2,4–6,8,14–20].
Clustering with proximity information, however, offers a number of
benefits over clustering with other forms of relational knowledge
including the more common distance-based knowledge. While there
are many forms of relational knowledge to choose from, it is
important to understand the advantages and challenges of each form
of domain knowledge to select the best one for a given problem. This
work is largely motivated to that end to gain a better understanding
of the advantages and disadvantages of proximity and distance
knowledge in the context of clustering.

Let us consider an illustrative example to highlight the essence
of the study. Suppose we have a data set with three clusters as
shown in Fig. 1.

In order to cluster this data set with commonly encountered
algorithms such as Fuzzy C-Means (FCM) or k-means, we would
need to choose a suitable distance measure (i.e. a way to measure
the relationship between the objects (points in this example)).
A simple measure that is most often used is the Euclidean
distance. Given the rather complicated geometry of this data
set, it is not surprising that FCM equipped with the Euclidean
distance is unable to discover a structure of data, see Fig. 2.

The boundaries of the clusters are shown in Fig. 2 (note that those
are determined by finding all points where the membership values of
the two neighboring clusters are equal). Let us express the relation-
ship between these objects using proximity rather than distance,
where proximity describes the degree of closeness of the objects. In
the example, these objects are points on a two dimensional grid;
therefore, we can quantify the degree of closeness using a Gaussian
membership function (see Table 1 for the formula). The width
parameter s2 offers some flexibility of the construct. When using a
proximity-based relational clustering algorithm to cluster the data, its
‘‘real’’ structure has been revealed as can be seen in Fig. 3.

When s2
¼0.7, we obtain two spherical clusters and a third cluster

that is formed by the rest of the data. The flexibility offered by the
width parameter is visualized in Fig. 3(c)–(e): when the values of s2

increase, the two spherical clusters become larger and ‘‘over-empha-
sized.’’ The other values of sigma show the flexilibity offered by
adjusting sigma. In Fig. 3(c)–(e), the two spherical clusters become
larger and over-emphasized as sigma increases. As a result, they

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2011.12.019

n Corresponding author. Tel.: þ1 780 461 8702; fax: þ1 780 492 1811.

E-mail addresses: dgraves@ualberta.ca, dangraves77@gmail.com (D. Graves),

j.noppen@uea.ac.uk (J. Noppen), wpedrycz@ualberta.ca (W. Pedrycz).

Pattern Recognition 45 (2012) 2633–2644

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.12.019
mailto:dgraves@ualberta.ca
mailto:dangraves77@gmail.com
mailto:j.noppen@uea.ac.uk
mailto:wpedrycz@ualberta.ca
dx.doi.org/10.1016/j.patcog.2011.12.019


include part of the zig-zag pattern. Therefore, choosing proximity
knowledge instead of the Euclidean distance (which is quite inflex-
ible) has definite advantages including:

� semantics arising from graded similarity, e.g. ‘‘close’’ and
‘‘far,’’ and
� flexibility.

This flexibility arises from the relationship of proximity func-
tions to kernel functions since a wide range of kernel functions
[27] can be employed to quantify proximity. This relationship is
well known, cf. [28], where the authors show that clustering
based on the adjacency matrix is equivalent to kernel-based
clustering. The adjacency matrix is found in spectral clustering
literature [9,29] where it is used to find a graph cut. It should be
noted that the definition of adjacency is very similar to but not
identical to our definition of proximity.

The problem of selecting a form of relational knowledge
becomes even more complicated as the available information
may originate from a number of different sources [2]:

� obtained from a human expert, and
� computed based on measures of distance, similarity, or

proximity.

Since we have to adhere to the properties of distance, similarity or
proximity, requesting accurate relational knowledge from a human
expert can become a problem. This is because the properties of, for
example, distance must obey the triangular inequality, which cannot
always be easily guaranteed. Recently, proximity functions have
become popular in deriving relational information for use in cluster-
ing [4–6]. Roughly speaking, proximity captures the degree of
resemblance between objects and can be described in a form of a
binary fuzzy relation quantifying the notion of ‘‘closeness’’ or resem-
blance (as similarity described in [2]). Distance, on the other hand, is a
measure of the separation of objects. The formal definition of
proximity relational information is that it must satisfy the properties
of identity (p(x,x)¼1) and symmetry p(x,y)¼p(y,x). Proximity does
not require transitivity. In contrast, distance must satisfy the trian-
gular inequality; therefore, proximity can be more easily obtained
from a human expert. In addition, the properties of proximity are
interesting from a research perspective as they offer a number of
advantages over the more common forms of relational knowledge
due to the semantics of ‘‘closeness.’’ However, there are a number of
open problems including how to select the best form of domain
knowledge for a given problem and how to determine the most
suitable relational measure of that knowledge, e.g. proximity function,
distance function, or similarity function. In particular limited work
has been done on quantifying the benefits of the different forms of
relational knowledge and their impact on relational clustering
frameworks.

To illustrate some of the current issues arising from relational
knowledge, consider the problems of clustering a collection of trees
such as those discussed in [21,22]. An example of a set of trees is
depicted in Fig. 4 where the nodes are labeled by lower case letters.
A serious concern is the lack of a numerical representation of this
problem in a feature space. These trees are entities, which are much
easier to capture by relational knowledge for the purposes of
clustering.

One way to describe these trees relationally is to use the edit
distance, cf. [23–26]. Note that there are polynomial time algo-
rithms that have been devised [6] to determine this. Using this
relational knowledge, one can cluster the trees shown in Fig. 4
using relational FCM or a similar relational clustering algorithm.
We may also choose to represent the relational information using
proximity, which is produced by a proximity function. One of the
benefits of proximity knowledge is that there is semantics
associated with the relational information, i.e. ‘‘close’’ (proximity
values approaching 1) and ‘‘far’’ (proximity values approaching 0).
With many different forms of relational knowledge, a question
arises on how does one choose the most suitable form of knowl-
edge for a given problem. One of the goals of this study is to
characterize the merits of using either proximity or distance to
aid in this decision making.

To summarize, the main objectives of our study are to

� introduce and discuss the advantages and disadvantages of
distance and proximity relational knowledge, and
� compare two clustering frameworks that make use of distance

and proximity relational knowledge to better understand their
differences and benefits.

The novelty introduced in this study stems from:

1. an in-depth presentation of the new proximity fuzzy cluster-
ing framework only briefly introduced in [7],

Fig. 1. An illustrative example.

Fig. 2. Boundaries of FCM-constructed clusters.

Table 1
Common proximity functions.

Name Proximity function Parameters

Gaussian pðx,yÞ ¼ expð�:x�y:2
=s2Þ s2 40

Cosine
pðx,yÞ ¼ 1

2
xT yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxT xÞðyT yÞ
p

� �
� 1

2

Polynomial
pðx,yÞ ¼ 1

2
ðxT yþyÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxT xþyÞp ðyT yþyÞp
p

� �
� 1

2

yZ0,pAnaturals;

ANOVA
pðx,yÞ ¼ 1

n

Pn
k ¼ 1

exp � 1
s2 :xk�yk:2p

� � sAR,p40,nAnaturals;
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