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Real-time accurate circle fitting with occlusions
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Abstract

Accurate location of circles inside images is a common problem in many scientific fields. Traditional algorithms, based on fitting a
parameterized model, cannot accurately determine the circle in presence of partial occlusions. A novel problem formulation, based on maximum
likelihood, allows estimating circles in real-time with sub-pixel accuracy also when occlusions are present.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Accurately locating circles in an image is a challenge in
many industrial fields, for instance, video inspection [1], par-
ticle tracking [2], robotics [3], neurosurgery [4], archeology
[5], biology [6], motion capture [7], and so forth. All these ap-
proaches are based on the assumption that the pixels on the
circle border or the inner circle pixels have been extracted by
suitable algorithms. This task, up to now, cannot be carried out
in real-time, in cluttered scenes where the circular object is
partially occluded to the view of the surveying camera.

The simplest solution to circle fitting is to compute the
barycentre of the cluster of circle pixels (cluster barycentre
method, CB). In this simple approach, the circle radius can be
estimated as the maximum distance of the cluster pixels from
the estimated centre. Alternatively, only the boundary pixels
can be considered (edge barycentre method, EB); in this case,
the radius is computed as the mean distance of the border pixels
from the estimated centre. Although simple, these approaches
have proved sufficiently accurate in general situations and they
have been widely implemented in commercial marker-based
motion capture systems [4,7,8]. However, these approaches do
not take full advantage of our knowledge of a circle’s shape,
and more refined parametric approaches have been proposed.
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In image processing, the circular Hough transform (CHT)
is widely adopted [9,10]. This technique is based on the fact
that a circle can be defined by a triplet of values (pC RC),
where pC =(xCyC) is the circle’s centre, and RC its radius. The
(pC RC) space is discretized into a finite number of accumu-
lation cells, each corresponding to a specific circle. A counter
is associated with each cell. The method requires first extract-
ing all the edge pixels from the image: {pi}i=1...N . Then, for
each pi, the counters of all those cells (pC RC) that are com-
patible with pi are increased by one. After all the points have
been considered, the accumulation cell with the highest count
contains the most probable circle centre and radius. Despite its
easy implementation, the CHT method is relatively slow; more-
over, it requires a large amount of memory to achieve relatively
high accuracy, since accuracy is proportional to the size of the
discretized cells [9]. To overcome these problems, efficient im-
plementations of the CHT have been proposed, [10]. In particu-
lar, methods based on the randomized Hough transform (RHT)
[11,12] have been proposed to speed-up the computation; CHT
maps a point into a cone in the parameters space, whereas RHT
iteratively selects a random triplet of points, which is mapped
into a single point inside the parameter space. However, RHT
(and the methods derived from it) does require manual setting
of few parameters and it does not reliably identify the circle
parameters when the circle is partially occluded and many edge
points do not lie on the circumference (see the Discussion sec-
tion for details).

http://www.elsevier.com/locate/pr
mailto:frosio@dsi.unimi.it
mailto:borghese@dsi.unimi.it


1042 I. Frosio, N.A. Borghese / Pattern Recognition 41 (2008) 1041–1055

Fig. 1. Four frames extracted from a video of two subjects exchanging a plate. In panels a–d (first row) the original, clustered images are shown; the plate’s
boundary points are depicted in black. The plate’s boundary points are fitted through GCF in panels e–h (second row), through CHT in panels i–l (third
row) and through RACF in panels m–p (fourth row—edge-based version, RACFE , is considered here). GCF clearly underestimates the circle’s radius, while
both CHT and RACF are able to locate the plate accurately also in presence of occlusions. CHT requires 13 s on Matlab interpreted language, whereas RACF
required 80 ms in Matlab and 1.7 ms in C.

An alternative is to consider circle fitting a statistical prob-
lem, where the circle’s parameters are fit to a set of samples
taken on the circle (non-linear regression). In this case, it is
again assumed that the a set of N circle points on the circum-
ference, {pi}i=1...N , have been previously extracted by an ade-
quate edge detection algorithm.

In the statistical algebraic circle fitting (ACF) method
[13–15], the parameters vector � = (a bT c), which describes
the circumference in analytical form:

F�(pi) = apT
i pi + bTpi + c = 0 (1)

is estimated from the set {pi}i=1...N . To avoid ambiguities, the
parameter vector � is normalized, for example fixing a = 1. �

is computed by minimizing the following cost function:

N∑
i=1

[F�(pi)]2, (2)

that results in a linear system in �, from which the circle’s
centre and its radius are derived. This solution, although simple
and fast, does not estimate directly the circle parameters and it
is therefore potentially inaccurate [16].

A more principled approach is represented by the statistical
geometrical circle fitting (GCF) method in which the error is

defined for each point pi as the distance between pi and the
circumference. The cost function is defined as [16–19]:

E =
N∑

i=1

(�i − RC)2, (3)

where

�i = ‖pi − pC‖ =
√

(xi − xC)2 + (yi − yC)2 (4)

is the distance of a generic point from the circle’s centre. Un-
der the hypothesis that each measured pi is corrupted by Gaus-
sian, isotropic noise, the least squares minimization of Eq. (3)
corresponds to the maximum likelihood formulation of the cir-
cle fitting problem. The minimization of Eq. (3) is a non-linear
problem that has no closed-form analytical solution, and itera-
tive methods must be implemented. Another cost function has
been suggested in [17]

E =
N∑

i=1

(�2
i − R2

C)2, (5)

which has simpler derivatives for the minimization algorithm,
but assigns a heavier weight to outliers [16,18]. In both cases,
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