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a b s t r a c t

Multiple-instance discriminant analysis (MIDA) is proposed to cope with the feature extraction problem
in multiple-instance learning. Similar to MidLABS, MIDA is also derived from linear discriminant analysis
(LDA), and both algorithms can be treated as multiple-instance extensions of LDA. Different from
MidLABS which learns from the bag level, MIDA is designed from the instance level. MIDA consists of two
versions, i.e., binary-class MIDA (B-MIDA) and multi-class MIDA (M-MIDA), which are utilized to cope
with binary-class (standard) and multi-class multiple-instance learning tasks, respectively. The block
coordinate ascent approach, by which we seek positive prototypes (the most positive instance in a
positive bag is termed as the positive prototype of this bag) and projection vectors alternatively and
iteratively, is proposed to optimize B-MIDA and M-MIDA to obtain lower dimensional transformation
subspaces. Extensive experiments empirically demonstrate the effectiveness of B-MIDA and M-MIDA
in extracting discriminative components and weakening class-label ambiguities for instances in
positive bags.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Different from traditional supervised learning where class labels
are attached to instances and the goal is to predict the class labels of
unseen instances, in multiple-instance learning only class labels of
bags (a set of instances is termed as a bag) are known and the goal
is to predict the class labels of unseen bags. A bag is classified as
positive iff it contains at least one positive instance, and otherwise it
is classified as negative. Fig. 1 depicts the comparison between
supervised (mono-instance) learning and multiple-instance learn-
ing, where blue circles and red stars denote positive and negative
instances, respectively. The collection of several instances with a
rectangular contour represents a positive bag, while that with an
ellipsoidal contour represents a negative bag. In subfigure (b), the
number around each bag denotes the index of the bag, the prefixes
“þ” and “�” denote the positive and the negative classes, respec-
tively. E.g., “þ1” denotes this is the first positive bag, “�2” denotes
this is the second negative bag. It is obvious that each object in
supervised learning is an instance and that in multiple-instance
learning is a collection of instances, i.e., a bag. Moreover, through
Fig. 1, it is easy to see that whether containing at least one positive
instance or not determines the class label of a bag.

The terminology “multiple-instance learning” was originally
proposed by Dietterich et al. [1] when they were investigating the

drug activity prediction problem. In their seminal paper, Dietterich
et al. considered the problem of predicting whether a candidate
drug molecule binds to the target protein or not. In particular, a
molecule may take on many different shapes, and if any of these
shapes conforms closely to the structure of the binding site, the
candidate molecule binds to the target protein. By treating each
shape of a molecule as an instance and each molecule as a bag, it is
easy to see that drug activity prediction is a typical multiple-
instance learning problem.

Besides drug activity prediction, multiple-instance learning
appears in many other areas, such as image categorization [2–5],
image retrieval [6–9], text classification [10,11], stock selection [10,12],
protein sequence classification [8,13], computer aided diagnosis
[14,15], and security application [16]. Zhou [17] gave a survey on the
topic of multiple-instance learning and reviewed some important
issues of this topic, such as the learnability, application domains,
typical algorithms, and potential research scopes in the future.

In the past 15 years, multiple-instance learning has become very
popular in the machine learning community, and researchers
have proposed many representative algorithms to cope with vari-
ous multiple-instance learning tasks. Maron and Ratan [2] studied
the natural scene classification problem under the multiple-instance
learning framework. They utilized diverse density (DD) to measure
the closeness of a point to at least one instance in each positive bag
and the remoteness of this point from all instances in negative bags,
and then utilized the point with maximum DD as the “target concept”
to operate classifications. Zhang and Goldman [18] combined DD
and expectation maximization (EM) into a unified framework, and
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proposed the EM-DD algorithm to seek the point with maximum DD
in an alternative and iterative way. Wang and Zucker [19] tried to
utilize neighborhood information in multiple-instance learning and
designed two k-nearest-neighbor (KNN) based multiple-instance
classifiers: Bayesian-KNN and Citation-KNN. Andrews et al. [10]
extended the support vector machines' (SVM) classifier to multiple-
instance case and got MI-SVM and mi-SVM to cope with multiple-
instance learning tasks. Gartner et al. [20] focused on the kernel
design for multiple-instance data and proposed Multiple-Instance
Kernel (MI-Kernel) to distinguish positive and negative bags. Zhou
et al. [21] treated instances in each bag as independent samples and
proposed two graph based algorithms (MI-Graph and mi-Graph) to
mine the underlying structural information among within-bag
instances. Zafra et al. [22] extended the traditional ReliefF algorithm
[23] to multiple-instance case and proposed the ReliefF-MI algorithm
to cope with multiple-instance feature selection tasks. Li et al. [24]
studied the multiple-instance learning problem by assuming that
instances are modeled as a mixture of concept and non-concept
distributions, and thus classified a bag as positive if the fraction of
concept instances in it was larger than a particular threshold. Zhang
et al. [25] treated automatically grouping motion patterns in traffic
scenes as a multiple-instance learning problem, and then proposed
the Maximum Margin Multi-instance Multi-cluster Learning (M4L)
algorithm to cope with this problem.

Standard multiple-instance learning consists of two classes, i.e.,
a positive class and a negative class. However, with the rapid
development of multiple-instance learning, its application domain
has been extended from the binary-class case to the multi-class
case [4,7,10]. In multi-class multiple-instance learning, for each
given class, if any instance in a bag represents the class label of the
given class, we say this instance is positive for the class, and hence,
this bag is positive for the class as well; otherwise, this bag is
negative for the class. Note that in multi-class multiple-instance
learning, usually we do not define the specific negative bags for
each class, because positive bags for some class can be simulta-
neously treated as negative bags for other classes, e.g., positive
bags for class c are also negative bags for classes except c.

Similar to other machine learning branches such as supervised,
unsupervised and semi-supervised learning, the feature extraction
problem exists in multiple-instance learning as well, e.g., the multiple-
instance data may also contain noisy and redundant components, the
curse-of-dimensionality problem may also occur in high dimensional
applications. Through feature extraction, we may reduce data's
dimensionality and save memory space, remove useless and noisy
components, reduce the time complexity in testing phase, weaken the
disadvantage caused by the curse-of-dimensionality problem, and
improve classification accuracies. In the past few years, several
researchers have studied the multiple-instance feature extraction
problem and proposed several dimensionality reduction algorithms.
E.g., Sun et al. [26] designed a probabilistic multiple-instance dimen-
sionality reduction algorithm, namely Multi-Instance Dimensionality
Reduction (MIDR), and proposed to solve it by gradient descent along
the tangent space of the orthonormal projection matrix; Ping et al.
[27] utilized the structural information conveyed by instances in a bag
to learn lower dimensional representations of original data, and

designed an algorithm named as Multi-Instance Dimensionality
reduction by Learning a mAximum Bag margin Subspace (MidLABS);
Kim and Choi [28] proposed the Citation Local Fisher Discriminant
Analysis (CLFDA) algorithm to utilize the citation and reference
information in detecting false positive instances and extracting local
discriminative information for multiple-instance learning.

Linear Discriminant Analysis (LDA) [29], which utilized the class-
label information to maximize the ratio of between-class scattering to
within-class scattering, was a classical supervised feature extraction
algorithm and had been successfully applied in many supervised
learning tasks [30–35]. In this paper, we propose Multiple-Instance
Discriminant Analysis (MIDA), an extension of LDA, to cope with the
multiple-instance feature extraction and dimensionality reduction
problems. Since there are two kinds of multiple-instance learning
problems, i.e., the binary-class one and the multi-class one, the
proposed MIDA algorithm has two versions as well, which can be
abbreviated as B-MIDA (Binary-class MIDA) and M-MIDA (Multi-class
MIDA), respectively. Note that the above mentioned MidLABS algo-
rithm can be treated as multiple-instance extension of LDA as well,
and hence our MIDA work is very similar to MidLABS. Both MIDA and
MidLABS try to maximize the trace of the between-class scattering
matrix and minimizes that of the within-class one simultaneously, but
their design principles are very different, because they construct the
scattering matrices from different levels. MIDA constructs the scatter-
ing matrices from the instance level, i.e., it selects a prototype for each
bag and utilizes this prototype as the representative of the bag to
construct scattering matrices. In contrast, MidLABS constructs the
scattering matrices from the bag level, i.e., it directly evaluates the
similarity and scattering among bags. Moreover, since MIDA is derived
from LDA, some limitations of LDA such as the unavailability for multi-
modal data and the independently and identically distributed (i.i.d.)
assumption for instances in the same class also exist in MIDA. Hence,
although the experimental results shown in Section 5 demonstrate
that MIDA performs well in extracting discriminative components, it
may still be improved in the future.

Note that the main difference of multiple-instance learning
from supervised learning is that there are class-label ambiguities
for instances derived from positive bags. If we can find out the
most positive instance in each positive bag, the disadvantage
caused by the class-label ambiguities may be weakened and we
may utilize supervised techniques to design multiple-instance
feature extraction algorithms. Therefore, both B-MIDA and
M-MIDA contain two types of unknown variables, of which the
first type are positive prototypes (the most positive instance in
each positive bag is termed as the positive prototype of this bag),
the second type are projection vectors. It is difficult to optimize
the two types of unknown variables simultaneously, because they
are neither jointly convex w.r.t. (with respect to) the objective
function nor can be optimized with analytical solutions. Instead,
we utilize the block coordinate ascent approach [36] to update the
above two types of unknown variables alternatively and itera-
tively. In each iteration, first we fix one type of unknown variables
and update the other type of ones, then alternate the order of the
above two types of unknown variables and update the fixed type
of ones in last step. We repeat the above two steps iteratively, until

Fig. 1. Illustration of supervised learning and multiple-instance learning: (a) for supervised learning and (b) for multiple-instance learning. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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