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a b s t r a c t

In this paper we present a new credal classification rule (CCR) based on belief functions to deal with the
uncertain data. CCR allows the objects to belong (with different masses of belief) not only to the specific
classes, but also to the sets of classes called meta-classes which correspond to the disjunction of several
specific classes. Each specific class is characterized by a class center (i.e. prototype), and consists of all the
objects that are sufficiently close to the center. The belief of the assignment of a given object to classify
with a specific class is determined from the Mahalanobis distance between the object and the center of
the corresponding class. The meta-classes are used to capture the imprecision in the classification of the
objects when they are difficult to correctly classify because of the poor quality of available attributes. The
selection of meta-classes depends on the application and the context, and a measure of the degree of
indistinguishability between classes is introduced. In this new CCR approach, the objects assigned to a
meta-class should be close to the center of this meta-class having similar distances to all the involved
specific classes' centers, and the objects too far from the others will be considered as outliers (noise). CCR
provides robust credal classification results with a relatively low computational burden. Several
experiments using both artificial and real data sets are presented at the end of this paper to evaluate
and compare the performances of this CCR method with respect to other classification methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The classical methods of classification have been developed at
first in the probability theory framework. These methods compute
the probability assignments of the objects in different specific
classes. The final assignment (classification) of an object is deter-
mined by the class committed with the highest probability value.
In the classification of uncertain data, the different classes can partly
overlap, and the objects in the overlapped zones are really hard to be
correctly classified into a particular class due to the insufficient
attributes information. Probability theory framework are not well
adapted to characterize such uncertainty and imprecision [1–3].

The belief functions (BF) [4–8] introduced in Dempster–Shafer
theory (DST) have been widely used to model the uncertain and
imprecise information for data clustering [9–11], data classification
[12–17], image processing [18,19], and for information fusion [20–22].
A new concept, called credal partition, based on belief functions for the
unsupervised data clustering has been introduced by Denœux and
Masson in [10]. The credal partitioning allows the objects to belong to
the specific classes, and to the sets of classes with different belief mass
assignments. This provides a deeper insight in the data. An EVidential

CLUStering (EVCLUS) [10] algorithmworking with credal partition has
been developed for relational data. An Evidential C-Means (ECM) [9]
clustering method inspired from the Fuzzy C-Means (FCM) [23], and a
Noise-Clustering algorithm [24] have also been proposed for the credal
partition of object data. However, ECM can produce very unreasonable
results when the different classes' centers are sufficiently close. This
serious drawback has been clearly shown and discussed in [11]. In our
previous related works, we have developed a method called belief
C-means (BCM) [11] to overcome the limitation of ECM by adopting
another interpretation of the meta-class. An evidential EM algorithm
[25] has been recently proposed for the parameter estimation in
statistical models when the uncertainty on the data can be modeled
by belief functions. Some supervised data classification methods [15]
have been also developed based on DST. The model-based classifiers
[15] have been proposed by Denœux and Smets based on Smets'
transfer belief model (TBM) [6–8]. An evidential version of K-nearest
neighbors rule (EK-NN) is proposed in [13], and a neural network
classifier based on DST is presented in [26]. All these evidential
classifiers consider only as possible assignment solution the specific
classes, and one extra class (i.e. the ignorant class) which is defined by
the disjunction of all the specific classes. In these supervised methods,
the meta-classes1 (i.e. the partially ignorant classes) are not considered
as useful solutions of the credal classification.
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In our opinion, the meta-classes play an important role to
characterize the imprecision of classification of the objects. The
objects hard to classify should be reasonably committed to the
meta-class, which can well reflect the imprecision (ambiguity)
degree of the classification, and reduce the misclassification errors
as well. In our very recent work, a belief K-nearest neighbor (BK-
NN) classifier [14] working with credal classification has been
developed to deal with uncertain data by considering all possible
meta-classes in the process. Such method however requests a high
computational burden which is usually the main drawback of all
K-NN alike methods [27]. The purpose of this paper is to propose a
new straightforward and more simple mathematical solution,
called Credal Classification Rule (CCR), for computing the basic
belief assignments of uncertain data for their credal classification.

The interest of credal classification mainly resides in its ability
to commit objects to the meta-classes rather than to the specific
classes when the information is insufficient for making it correctly.
By doing so, we preserve the robustness of the result and we
reduce the risk of misclassification errors. Of course the price to
pay is the increase of the non-specificity of the classification. In
some applications, specially those related to defense and security,
like in target classification and tracking, it is very crucial to
maintain such robustness than to provide immediately (with high
risk of error) a precise classification. The credal classification can
be very helpful to manage external (possibly costly) complemen-
tary resources in order to reduce some particular ambiguities. Our
approach is very helpful for requesting (or not) a complementary
information sources (if possible and available) in order to get more
precise reliable classification results, and to reduce dramatic errors
in the final decision-making process.

In this new CCR approach, each specific class is characterized
by the corresponding class center (i.e. prototype) computed from
the training data. The center of a meta-class is calculated based on
the centers of specific classes included in the meta-class. In the
multi-class classification problem, there are usually only few (not
all) classes that partly overlap, and most classes that are in fact far
from each other can be well separated. The meta-class defined by
the union of the classes that are far from each other are not useful
in such applications. In order to reduce the computational com-
plexity, we just need to select the useful meta-classes according to
the context of the application under concern. The belief mass
assignment of the object to classify with each specific class is
determined based on the Mahalanobis distance between the
object and the corresponding specific class center. Intuitively, the
object committed to a specific class should be very close its center.
If the object to classify is assigned to a meta-class, it means that
the true class of the object is among the specific classes included
in the meta-class but we do not know which one precisely. The
ratio of the maximum distance of the object to the involved
specific classes' centers, over the minimum distance, is introduced
to measure the degree of distinguishability of these classes. Thus,
the belief mass of a meta-class is determined from the distance
between the object and the center of meta-class and its corre-
sponding ratio value. An object will be committed to a meta-class
with a high belief mass as soon as it is located at (almost) the same
distances of several specific classes centers. Because in that case, it
means that the object is very difficult to be correctly classified into
a specific class. CCR provides credal classification results with low
computational burden due to the simple working principle.

After a brief presentation of belief functions in Section 2, we
state in Section 3 the principles of CCR and the mathematical
computation of bba's for the credal classification. In Section 4, we
present some classification results based on artificial and real data
sets, and we compare the performances of the CCR with respect
to well-known classification methods. Conclusions are given in
Section 5.

2. Basics of belief functions theory

The belief functions have been introduced by Shafer in 1976 in
his Mathematical Theory of Evidence known also as Dempster–
Shafer Theory (DST) [4–8]. Let us consider a finite discrete set
Θ¼ fθ1;θ2;…;θhg of h41 mutually exclusive and exhaustive
hypotheses θi, i¼ 1;2;…;h. This set Θ is called the frame of
discernment of the problem under consideration. The power-set
of Θ, denoted 2Θ, includes all the subsets of Θ. It is defined by

2Θ ¼ fAjADΘg ð1Þ

For example, if Θ¼ fθ1;θ2;θ3g, then 2Θ ¼ f∅;θ1;θ2;θ3;θ1 [ θ2;

θ1 [ θ3;θ2 [ θ3;θ1 [ θ2 [ θ3g.
In the frame of discernment Θ, each element (e.g. θiAΘ)

represents one single hypothesis, and it characterizes one class
in this work. The union θi [ θj � fθi;θjg of two elements2 θi and θj
is interpreted as the proposition “the truth value of unknown
solution of the problem under concern is either in θi, or in θj, and
θi and θj are undistinguishable”.

A basic belief assignment (bba) is a functionmð�Þ from 2Θ to [0, 1]
satisfying

∑
AA2Θ

mðAÞ ¼ 1 ð2Þ

The subsets A of Θ such that mðAÞ40 are called the focal elements of
mð�Þ. The credal partition [9,10] is defined as n-tupleM¼ ðm1;…;mnÞ,
wheremi is the basic belief assignment of the object xiAX, i¼ 1;…;n
associated with the different elements of the power-set 2Θ. The mass
of belief of meta-class can well reflect the imprecision (ambiguity)
degree of the classification of the uncertain data.

From any bba mð�Þ, the belief function Belð�Þ and the plausibility
function Plð�Þ are defined for 8XA2Θ as

BelðXÞ ¼ ∑
YA2Θ jYDX

mðYÞ

PlðXÞ ¼ ∑
YA2Θ jX\Ya∅

mðYÞ

8>><
>>: ð3Þ

Bel(X) represents the whole mass of belief that comes from all
subsets of Θ included in X. It is interpreted as the lower bound of
the probability of X, i.e. PminðXÞ. Belð�Þ is a sub-additive measure
since ∑θi AΘBelðθiÞr1. Pl(X) represents the whole mass of belief
that comes from all subsets of Θ compatible with X (i.e. those
intersecting X). Pl(X) is interpreted as the upper bound of the
probability of X, i.e. PmaxðXÞ.

The Pignistic probability (or betting probability) transformation
BetPð�Þ introduced by Smets [6,7] is commonly used to transform
any bba mð�Þ into a probability measure for the decision-making
support based on the maximum of BetPð�Þ value. Mathematically,
BetP(A) is defined 8AA2Θ\f∅g by

BetPðAÞ ¼ ∑
BA2Θ ;ADB

jA \ Bj
jBj mðBÞ ð4Þ

where jXj is the cardinality of the element X (i.e. the number of the
singleton elements in X, for example if X ¼ θi [ θj then jXj ¼ 2).

In DST [4], the combination of distinct bba's is done by
Dempster's rule of combination. This paper only focuses on the
construction of bba mð�Þ in the credal classification context and
does not concern the combination of bba's.

2 Since there is one-to-one mapping between propositions and sets [4], the
union set operator is equivalent to the disjunction operator of propositions. Hence,
θ1 [ θ2 [ … [ θh �Θ.
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