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ABSTRACT

Multi-label core vector machine (Rank-CVM) is an efficient and effective algorithm for multi-label
classification. But there still exist two aspects to be improved: reducing training and testing computa-
tional costs further, and detecting relevant labels effectively. In this paper, we extend Rank-CVM via
adding a zero label to construct its variant with a zero label, i.e., Rank-CVMz, which is formulated as the
same quadratic programming form with a unit simplex constraint and non-negative ones as Rank-CVM,
and then is solved by Frank-Wolfe method efficiently. Attractively, our Rank-CVMz has fewer variables to
be solved than Rank-CVM, which speeds up training procedure dramatically. Further, the relevant labels
are effectively detected by the zero label. Experimental results on 12 benchmark data sets demonstrate
that our method achieves a competitive performance, compared with six existing multi-label algorithms
according to six indicative instance-based measures. Moreover, on the average, our Rank-CVMz runs 83

Quadratic programming
Linear programming

times faster and has slightly fewer support vectors than its origin Rank-CVM.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional supervised classification deals with problems in which
one instance is only associated with a single class label and thus the
classes are mutually exclusive [1]. However, in many real-world
applications, e.g., text categorization [2-4], scene and video annota-
tion [5-7], bioinformatics [8-10], and music emotion classification
[11], one instance possibly belongs to several labels simultaneously.
One typical example is that a sunrise image could be labeled by sun,
sky and sea at the same time [5,6]. Such a classification setting is
referred to as multi-label classification, which has attracted a lot of
attention in the past 10 years [12-15]. Nowadays, there mainly exist
four ways to construct various discriminative multi-label classifica-
tion algorithms: data decomposition, algorithm extension, hybrid
and ensemble strategies.

Data decomposition strategy splits a multi-label data set into
either one or more single-label (binary or multi-class) subsets,
trains a sub-classifier for each subset using an existing classifier, and
then combines all sub-classifiers into an entire multi-label classifier.
There are two widely used decomposition tricks: one-versus-rest
(OVR) or binary relevance (BR), and label powerset (LP) [12-15]. It is
convenient to build a data decomposition multi-label method since
many popular single-label classifiers (e.g., support vector machine
(SVM) and k-nearest neighbor method (kNN)) and their free soft-
ware are available. The main criticism is that label correlations are
not depicted explicitly in OVR methods and lots of new classes with
a few instances are created in LP methods.
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Algorithm extension strategy extends a specific multi-class algo-
rithm to consider all training instances and classes (or labels) of a
multi-label training data set all together. But such a strategy could
induce some complicated optimization problems, e.g., two large-scale
quadratic programming (QP) ones in multi-label support and core
vector machines (Rank-SVM and Rank-CVM) [9,10], and a large-scale
unconstrained optimization one in multi-label back-propagation
neural networks (BP-MLL) [8]. Attractively, these methods explicitly
describe as many label correlations of individual instance using
pairwise constraints between relevant labels and irrelevant ones as
possible.

Hybrid strategy not only generalizes an existing single-label
method but also divides a multi-label data set into a series of subsets
implicitly or explicitly. After the OVR trick is embedded, the kNN is
cascaded with discrete Bayesian rule and logistic model respectively in
ML-kNN and IBLR-ML [6,16], and the label correlation is characterized
using different upper bounds in OVR-ESVM [17]. Such a strategy
weakly depicts label correlations either explicitly or implicitly with a
relatively lower computational cost.

Ensemble strategy [18] either extends an existing multi-class
ensemble classifier or realizes a new ensemble of the aforementioned
three kinds of multi-label techniques. The famous AdaBoost is genera-
lized to implement two different multi-label versions: AdaBoost.MH
and AdaBoost.MR [3]. The former is further integrated with alternative
decision tree to construct a tree-type ensemble classifier ADTree [19].
Random k-labelsets (RAKEL) method splits an entire label set into
several subsets of the size k, learns LP classifiers and then integrates an
ensemble multi-label algorithm [20]. Ensemble of classifier chains
(ECC) [21] is an ensemble technique which uses classifier chains (CC)
as a base classifier, where CC indicates to construct an OVR classifier in
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a cascade way rather than a parallel one. In [18], random forest of
predictive clustering trees (RF-PCT) is strongly recommended because
of its good performance from an extensive experimental comparison,
including ECC and RAKEL. Usually, these ensemble methods spend
more training and testing costs to achieve their classification perfor-
mance improvement.

As mentioned above, algorithm extension strategy considers as
many label correlations as possible, which is one of the optimal ways
to improve multi-label classification performance further [22]. But, its
corresponding methods have a relatively high computational com-
plexity which limits their usability for lots of real world applications.
Therefore, it is still necessary to construct some novel efficient multi-
label algorithms. In this paper, our focus is on SVM-type multi-label
classifiers.

The famous Rank-SVM [9] is formulated as a QP problem with
equality constraints and box ones. When Frank-Wolfe method
(FWM) [23,24] is applied, Rank-SVM needs to deal with a large-
scale linear programming (LP) at its each iteration. The Rank-CVM
[10] is depicted as a QP problem with a unit simplex constraint and
non-negative ones. When Rank-CVM is solved by FWM, at its each
iteration, there exist a closed solution, a closed step size and several
efficient recursive formulae. The theoretical analysis and experi-
mental study show that Rank-CVM has a lower time complexity
than Rank-SVM, although both of them have the same number of
variables to be solved. This implies that a special QP form possibly
can result in an efficient SVM-type multi-label classifier.

On the other hand, both Rank-SVM and Rank-CVM need an
additional linear threshold function to detect relevant labels.
Through adding a zero label for isolating relevant labels from
irrelevant ones, a variant of Rank-SVM, i.e.,, Rank-SVMz [25], is
proposed, whose QP form includes disjoint equality constraints for
different classes, and then is solved by FWM with the OVR trick.
When the label cardinality is slightly large, the number of vari-
ables to be solved in Rank-SVMz is much fewer than that in Rank-
SVM, e.g., 21,000/58,248 for Yeast [9,25]. Therefore embedding a
zero label both reduces the computational cost and learns a
threshold function simultaneously.

In this paper, we generalize Rank-CVM to build its variant with a
zero label, i.e., Rank-CVMz, which is formulated as the same QP form
as Rank-CVM and thus is solved by FWM efficiently. Particularly, the
number of variables to be solved in Rank-CVMz is the same as that in
Rank-SVMz and fewer than that in Rank-CVM. Hence, our Rank-CVMz
has a lower time complexity than Rank-CVM. Additionally, the
relevant labels are detected effectively via the zero label. Experiments
on 12 benchmark data sets illustrate that our method is a competitive
candidate for multi-label classification according to six instance-based
measures, compared with six existing techniques including Rank-CVM
[10], Rank-SVMz [25], Rank-SVM [9], BP-MLL [8], ML-kNN [6] and RF-
PCT [18]. Furthermore, our Rank-CVMz runs 83 times faster and has
slightly fewer support vectors than Rank-CVM on the average.

The rest of this paper is organized as follows. Multi-label
classification setting is introduced in Section 2 and three related
SVM-type methods are summarized in Section 3. In Sections 4 and
5, our Rank-CVMz is proposed and then an efficient training
algorithm is constructed and analyzed. Section 6 is devoted to
experiments with 12 benchmark data sets. This paper ends with
some conclusions in Section 7.

2. Multi-label classification setting

Let X e R? be a d-dimensional real input space, Q ={1,2,...,q} a
finite set of q class labels, and 22 all possible subsets of Q. We denote a
training data set of size | drawn identically and independently from an
unknown probability distribution on X x 22 by

{(%1,L1), ..., (*;, L), ..., (%1, L))}, (1)

where x; € X and L; e 22 represent the ith instance and its relevant
label set. Additionally, the complement of L;, i.e., L; = Q\L;, is referred
to as the irrelevant label set. For the convenience of formula
representation, we also adopt a binary vector y' =[y;1, Vi ..., Yigl to
label the instance x;, where y; =1 if the kth label is in L;, and —1
otherwise.

The goal of multi-label classification is to learn a classifier f(x) :
X —29 which can predict the relevant labels for unseen instances
in the sense of optimizing some expected risk functional with
respect to a specific empirical loss function [8-10,16].

In classical g-class single-label classification, a widely used trick is
to learn g discriminant functions f(x) : X—»>R,k=1,...,q such that
fe@®) >fr(x), kK ifxe class k [1]. For multi-label classification, as a
natural extension of multi-class one, this trick is adapted as
fe@®)>fr(x), keL and k" e L, which means that any relevant label
should be ranked higher than any irrelevant one [8-10,25]. In case
such an ideal case does not happen, the ranking loss over the training
set (1) can measure the average fraction of label pairs (any relevant
label versus any irrelevant one) that are not correctly ordered:

I
Ranking loss = ]T _21 (M_‘]T}(k, Ky e (L x Ly)|fr(x;) gfk/(xi)l). )
1= 1 1

It is worth noting that this measure is non-differentiable. But,
we could find out an approximate proxy of (2) as an empirical loss
to be minimized in SVM-type multi-label classifiers. Finally, the
multi-label prediction is executed through a proper threshold
function t(x):

F@) = (kif @) > t@),k=1,....q). 3)

Now there are mainly three kinds of thresholds: a constant
(e.g., 0.0 for —1/+1 setting and 0.5 for 0/1 one) [2,5], a linear
regression model associated with g discriminant function values
[8-10], and an additional discriminant function for a virtual,
calibrated or zero label [25-27]. In the last two cases, t(x) is
dependent on x either directly or implicitly. Several more compli-
cated threshold methods can improve classification performance
further [28,29].

3. Related work

In the recent years, since multi-label classification has received
a lot of attention in machine learning, pattern recognition and
statistics, a variety of methods have been presented, which
have been summarized and reviewed in four exhaustive overviews
[12-15] and our previous work [10,17,25]. In this section, we
mainly review three multi-label SVM-type methods: Rank-SVM
[9], Rank-CVM [10] and Rank-SVMz [25].

For a g-class multi-label training set (1), we define the follow-
ing linear discriminant functions in the original input space:

fi@®=wlx+b,, k=0,1,...q, (4)

where wy and b, denote respectively the weight vector and the
bias term for the kth label or class, and k = 0 indicates a zero label
specially.

3.1. Multi-label support vector machine and core vector machine

Multi-label support vector machine (i.e., Rank-SVM) [9] extends
multi-class SVM [30] to deal with multi-label classification. It is
desirable that any relevant label should be ranked one higher than
any irrelevant. In case such an ideal situation does not occur, a slack
variable is introduced. Therefore, the relative relationship between
any relevant label and any irrelevant one for some training instance
x;, i.e., (m,n)e(L; x L;), is described using the following pairwise
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