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a b s t r a c t

A common approach to solving multi-label learning problems is to use problem transformation

methods and dichotomizing classifiers as in the pair-wise decomposition strategy. One of the problems

with this strategy is the need for querying a quadratic number of binary classifiers for making a

prediction that can be quite time consuming, especially in learning problems with a large number of

labels. To tackle this problem, we propose a Two Stage Architecture (TSA) for efficient multi-label

learning. We analyze three implementations of this architecture the Two Stage Voting Method (TSVM),

the Two Stage Classifier Chain Method (TSCCM) and the Two Stage Pruned Classifier Chain Method

(TSPCCM). Eight different real-world datasets are used to evaluate the performance of the proposed

methods. The performance of our approaches is compared with the performance of two algorithm

adaptation methods (Multi-Label k-NN and Multi-Label C4.5) and five problem transformation methods

(Binary Relevance, Classifier Chain, Calibrated Label Ranking with majority voting, the Quick Weighted

method for pair-wise multi-label learning and the Label Powerset method). The results suggest that

TSCCM and TSPCCM outperform the competing algorithms in terms of predictive accuracy, while TSVM

has comparable predictive performance. In terms of testing speed, all three methods show better

performance as compared to the pair-wise methods for multi-label learning.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional problem of single-label classification is con-
cerned with learning from examples, each associated with a
single label li from a finite set of disjoint labels L¼ fl1,l2, . . . ,
lQ g,Q 41. For Q 42, the learning problem is referred to as a
multi-class classification. On the other hand, the task of learning a
mapping from an example xAX (X denotes the domain of
examples) to a set of labels YDL is referred to as a multi-label

classification. Thus, in contrast to multi-class classification, alter-
natives are not assumed to be mutually exclusive such that
multiple labels may be associated with a single example, i.e.,
each example can be a member of more than one class. The set of
labels Y are called relevant, while the set L\Y represents irrelevant
labels for a given example.

Label ranking studies the problem of learning a mapping from a
set of examples to rankings over a finite number of predefined
labels. It can be considered a natural generalization of conven-
tional (multi-class) classification, where instead of requesting

only a single label (a top label), a ranking of all the labels is
performed.

Besides the concept of multi-label classification, the multi-
label learning introduces the concept of multi-label ranking [1],
which is understood as learning a model that the query example x

associates both with a (label) ranking of the complete label set
fl1,l2, . . . ,lQ g and a bipartite partition of this set into relevant and
irrelevant labels.

The issue of learning from multi-label data has recently
attracted significant attention from many researchers. They are
motivated from an increasing number of new applications, such
as semantic annotation of images and video (news clips, movies
clips), functional genomics (gene and protein function), music
categorization into emotions, text classification (news articles,
web pages, patents, emails, bookmarks,y), directed marketing
and others.

In recent years, many different approaches have been developed
to solve the multi-label learning problems. Tsoumakas and Katakis
[2] summarize them into two main categories: (a) algorithm
adaptation methods, and (b) problem transformation methods.
Algorithm adaptation methods extend specific learning algorithms
to handle multi-label data directly. Examples include lazy learning
[3–5], neural networks [6,7], boosting [8,9], classification rules [10],
etc. Problem transformation methods, on the other hand, transform
the multi-label learning problem into one or more single-label

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2011.08.011

� Corresponding author at: Faculty of Computer Science and Engineering, Ss.

Cyril and Methodius University, Rugjer Boshkovikj 16, 1000 Skopje, Macedonia.

E-mail address: gjorgji.madjarov@finki.ukim.mk (Gj. Madjarov).

Pattern Recognition 45 (2012) 1019–1034

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.08.011
mailto:gjorgji.madjarov@finki.ukim.mk
dx.doi.org/10.1016/j.patcog.2011.08.011


classification problems. The single-label classification problems are
solved with a commonly used single-label classification approach
and the output is transformed back into a multi-label representa-
tion via some reverse process. A common approach for problem
transformation is to use class binarization methods, i.e., decom-
position of the problem into several binary sub-problems that can
then be solved using a binary base classifier. The simplest strategies
in the multi-label setting are the one-against-all and one-against-
one strategies, also referred to as the binary relevance method [2]
and pair-wise method [11,12], respectively. The computational
complexity of the pair-wise learning approach to the multi-label
scenario is large, especially in learning problems with a large
number of labels.

In this paper, we propose a novel architecture for efficient
pair-wise multi-label learning, named Two Stage Architecture
(TSA). We analyze three different methods/implementations of
this architecture the Two Stage Voting Method (TSVM), the Two
Stage Classifier Chain Method (TSCCM) and the Two Stage Pruned
Classifier Chain Method (TSPCCM). The two stage architecture and
its three methods belong to the group of the problem transforma-
tion methods. Their main idea is to reduce the computational
complexity of pair-wise methods and increase their predictive
accuracy. We evaluate the performance of these methods on a
selection of multi-label datasets that vary in terms of problem
domain, number of labels and label cardinality. The obtained
results demonstrate that our approaches outperform the compet-
ing methods (five problem transformation and two algorithm
adaptation methods) in terms of predictive accuracy. Also, in
terms of testing speed our architecture shows better performance
as compared to the pair-wise methods for multi-label learning.

For the readers’ convenience, Section 2 surveys some previous
work in multi-label learning. The Two Stage Architecture and its
computational complexity are presented in Section 3. Section 4
presents the experimental results, that compare the performance
of the proposed approaches (TSVM, TSCCM and TSPCCM) with
other competing methods. The conclusion and directions for
further work are given in Section 5.

2. Related work

In this section, we will give an overview of different methods
for solving multi-label learning problems. These methods can be
summarized in two main categories: Algorithm adaptation meth-
ods and problem transformation methods. Additionally, the
problem transformation methods can be grouped in three sub-
categories: Binary relevance methods, label power-set methods
and pair-wise methods.

2.1. Algorithm adaptation methods

AdaBoost.MH and AdaBoost.MR [8] are two extensions of
AdaBoost for multi-label data. While AdaBoost.MH is designed
to minimize Hamming loss, AdaBoost.MR is designed to find a
hypothesis which places the correct labels at the top of the
ranking. A combination of AdaBoost.MH with an algorithm for
producing alternating decision trees [9] has been proposed, with
the motivation of producing multi-label models that can be
understood by humans.

Clare et al. [13] adapted the C4.5 algorithm for multi-label data
(ML-C4.5). They modified the formula of entropy calculation (Eq. (1))
in order to solve the multi-label problem. They also allowed
multiple labels in the leaves of the tree. The modified entropy

sums the entropies for each individual class label.

entropyðSÞ ¼�
XN

i ¼ 1

ðpðciÞ log pðciÞþqðciÞ log qðciÞÞ ð1Þ

where S is the set of examples, pðciÞ is the relative frequency of
class ci and qðciÞ ¼ 1�pðciÞ.

ML-kNN [3] is based on the popular k nearest neighbors (kNN)
lazy learning algorithm. The first step in this approach is the same as
in kNN, i.e., retrieving the k nearest examples. It uses the maximum
a posteriori principle in order to determine the label set of the test
example, based on prior and posterior probabilities, i.e., the fre-
quency of each label within the k nearest neighbors. Other kNN
based approaches for multi-label learning also exist [4,5].

Neural networks have also been adapted for multi-label
classification [6,7]. BP-MLL [7] is an adaptation of the popular
back-propagation algorithm for multi-label learning. The main
modification to the algorithm is the introduction of a new error
function that takes multiple labels into account.

2.2. Problem transformation methods

An extensive bibliography of learning algorithms for problem
transformation methods is given by Tsoumakas and Katakis [2].
The simplest strategy in the multi-label setting is the one-against-
all strategy also referred to as the binary relevance method
(BR) [2]. It addresses the multi-label learning problem by learning
one classifier for each class, using all the examples labeled with
that class as positive examples and all remaining examples as
negative examples. At query time, each binary classifier predicts
whether its class is relevant for the query example or not,
resulting in a set of relevant labels. In the ranking scenario, the
labels are ordered according to the probability association of each
label from each binary classifier. A method closely related to the
BR method is the Classifier Chain (CC) method proposed by Read
et al. [14]. This method involves Q binary classifiers as in BR.
Classifiers are linked along a chain where each classifier deals
with the binary relevance problem associated with label liAL,
ð1r irQ Þ. The feature space of each link in the chain is extended
with the 0/1 label associations of all previous links. The ranking
and the prediction of the relevant labels in the CC method are the
same as in the BR method.

Second problem transformation method is the label combina-
tion method, or label power-set (LP) method, which has been the
focus of several recent studies [15,16,2]. The basis of this method
is to combine entire label sets into atomic (single) labels to form a
single-label problem for which the set of possible single labels
represents all distinct label subsets in the original multi-label
representation. Each ðx,YÞ is transformed into ðx,lÞ where l is the
atomic label representing a distinct label subset. In this way, LP
based methods directly take into account label correlations. To
solve the problem of the large number of label combinations,
Read [17] developed a pruned problem transformation method
(PPT), that selects only the transformed labels that occur more
than predefined number of times. A disadvantage of these
methods, however, is their worst-case time complexity.

Third problem transformation approach to solving the multi-
label learning problem by using binary classifiers is pair-wise
classification or round robin classification [11,12]. Its basic idea is
to use QnðQ�1Þ=2 classifiers covering all pairs of labels. Each
classifier is trained using the samples of the first label as positive
examples and the samples of the second label as negative
examples. To combine these classifiers, the pair-wise classifica-
tion method naturally adopts the majority voting algorithm.
Given a test example, each classifier delivers a prediction for
one of the two labels. This prediction is decoded into a vote for
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