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a b s t r a c t

This paper proposes an extension of classification trees to time series input variables. A new split criterion

based on time series proximities is introduced. First, the criterion relies on an adaptive (i.e., parameterized)

time series metric to cover both behaviors and values proximities. The metrics parameters may change

from one internal node to another to achieve the best bisection of the set of time series. Second, the

criterion involves the automatic extraction of the most discriminating subsequences. The proposed time

series classification tree is applied to a wide range of datasets: public and new, real and synthetic,

univariate and multivariate data. We show, through the experiments performed in this study, that the

proposed tree outperforms temporal trees using standard time series distances and performs well

compared to other competitive time series classifiers.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Time series classification has been the subject of extensive
research in the last several years. A first category of proposals
consists of mapping time series to a new description space where
conventional classifiers can be applied. Signal processing or
statistical tools are commonly used to project time series into a
given functional basis space. For instance, such projection can be
performed by a Fourier or wavelet transform, a polynomial or an
ARIMA approximation. Standard classifiers are subsequently
applied on the fitted basis coefficients [1–5]. A second class of
works proposes new heuristics, generally starting with the time
series segmentation to extract prototypes that best characterize
the time series classes. The prototypes, defined by such factors as
a set of subsequences or regions of values, are subsequently
described by a set of numerical features where standard classi-
fiers can be applied [6–11]. A third category may be distinguished
that consists of the hidden Markov models [12], which is
frequently used for speech recognition and signal processing.

This paper focuses on a distance-based approach to extending
classification trees to temporal data. We propose a new time
series split criterion characterized by, on the one hand, the use of
an adaptive metric to cover both behaviors and values proximi-
ties. This metric may change from one node to another according
to the set of time series to be divided. On the other hand, the
proposed split involves an automatic extraction of the most
discriminating subsequences (i.e., segments of time series). We

show, through the experiments performed, that the proposed tree
outperforms temporal trees using standard time series distances
and performs well compared to other competitive time series
classifiers.

The rest of the paper is organized as follows. In the next section,
we discuss two distance-based temporal trees proposed by Yamada
et al. [13] and by Balakrishnan and Madigan [14]. In Section 3, the
major metrics for time series are presented in a novel unified
formalism. Section 4 presents the new time series classification tree,
provides the main algorithms and discusses their complexity. In
Section 5, the proposed classification tree is performed on six public
and three new simulated datasets. The induced trees are compared
to temporal trees using standard distances and are compared to
other competitive time series classifiers.

2. Related works

In this section, we describe two temporal classification trees
proposed by Yamada et al. in 2003 and by Balakrishnan and
Madigan in 2006. Both works build binary classification trees in
which internal nodes are labeled by one or two time series.
Proposed classifiers are mainly based on new split tests to bisect
the set of time series within internal nodes most effectively.

Yamada et al. [13] proposes two split tests. The first test, called
the standard-example split test, uses an exhaustive search to select
one existing time series (called the standard time series), leading
to division with a maximum purity gain ratio. The first child node
is composed of time series with a distance to the standard time
series that is less than a given threshold, while the second child
node contains the remaining time series. If more than one
standard time series provides the largest value of the purity gain
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ratio, a class isolation criterion is used to select the split that
exhibits the most dissimilar child nodes.

The second proposed split test, which is called the cluster-

example split test, performs an exhaustive search for two standard
time series. The bisection is constructed by assigning each time
series to the nearest standard time series. Similarly, the purity
gain ratio and the class isolation criterion are used to select the
best split test. For both split tests, the dynamic time warping is
used as the time series proximity measure.

Balakrishnan and Madigan [14] look for a pair of reference
time series that best bisects the set of time series according to a
clustering-goodness criterion. For this purpose, a k-means algo-
rithm is used. This algorithm ensures a partitioning that opti-
mizes clustering criteria, namely, the compactness and isolation
of the clusters but not their purity. To alleviate this problem, the
authors repeat the k-means clustering several times and select
the partition that gives the highest Gini index. The centers of the
clusters define the pair of reference time series for the split test.
For the time series proximities, both the Euclidean distance and
the dynamic time warping are used to compare the efficiency of
the obtained classification trees.

In summary, the cluster-example split test of Yamada et al. [13]
and the one proposed by Balakrishnan and Madigan [14] are
highly similar. The former first looks for a set of time series
bisections with the highest purity clusters (i.e., the highest Gini
index) and picks the one optimizing some clustering criteria (i.e.,
maximizing the separability of the clusters), whereas the latter
first looks for a set of splits that optimize clustering criteria (i.e.,
k-means criteria) and accordingly selects the one exhibiting the
highest purity clusters (i.e., maximizing the Gini index). When
giving priority to a clustering criterion instead of the purity of the
clusters, the split test may fail to select bisections of lower
clustering criteria but of higher purity.

Let us make some remarks about the above proposed split tests.
First, as for many distance-based approaches, the Euclidean distance
and the dynamic time warping are considered for the time series
proximities. These standard measures are values-based metrics and
ignore the behaviors of the time series as discussed in Section 3.
Second, the proposed splits use the same metric to divide all the
nodes, but the peculiarities of the time series may change from one
node to another. Finally, the time series distances are calculated
using the whole time series values, even though the discrimination
is determined by particular subsequences.

3. Time series metrics

We present, in a unified formalism, three categories of time
series metrics. The first category relies on two standard values-
based metrics: the dynamic time warping and the Euclidean
distance. In the second category, we recall the definition of the
correlation coefficient and the temporal correlation coefficient,
which are used as behavior-based metrics. In the third category,
we present a model to cover both behaviors and values compo-
nents of time series. In particular, extensions of the Euclidean
distance and of the dynamic time warping are provided to cover
both behaviors and values proximities.

Let S1 ¼ ðu1, . . . ,upÞ and S2 ¼ ðv1, . . . ,vqÞ be two time series of p

and q values observed at the time instants ðt1, . . . ,tpÞ and
ðt01, . . . ,t0qÞ, respectively. A mapping r between S1 and S2 is defined
as a sequence of m pairs of observations ððua1

,vb1
Þ,ðua2

,vb2
Þ,

. . . ,ðuam ,vbm
ÞÞ, with aiAf1, . . . ,pg, biAf1, . . . ,qg, and iAf1, . . . ,m�1g

obeying the order constraints:

a1 ¼ 1, am ¼ p, aiþ1 ¼ ai or aiþ1 and,

b1 ¼ 1, bm ¼ q, biþ1 ¼ bi or biþ1:

with mA ½maxðp,qÞ,pþq�1�. Let R be a subset of such mappings,
possibly satisfying some additional constraints, and let c(r) (rAR) be
the mapping cost function measuring the distance between the
coupled values in r. A unified formalism of the time series proximity
measures, denoted dUnif, may be presented as an optimization
problem minimizing the cost function c(r) on the search space R:

dUnif ðc,RÞðS1,S2Þ ¼min
rAR

cðrÞ: ð1Þ

3.1. Values-based metrics

For the cost function definition cðrÞ ¼
Pm

i ¼ 1 9uai
�vbi

9, dUnif ðc,RÞ

(Eq. (1)) leads to the standard dynamic time warping [15]:

dDtwðS1,S2Þ ¼min
rAR

Xm

i ¼ 1

9uai
�vbi

9

 !
ð2Þ

In the case of times series of the same length (m¼ p¼ q), and for
the cost function definition cðrÞ ¼ ð

Pm
i ¼ 1ðui�viÞ

2
Þ
1=2 minimized on

R¼ fr0g, dUnif ðc,RÞ gives the Euclidean distance, with:

r0 ¼ ððu1,v1Þ,ðu2,v2Þ, . . . ,ðum,vmÞÞ ð3Þ

dEðS1,S2Þ ¼ cðr0Þ ¼
Xm
i ¼ 1

ðui�viÞ
2

 !1=2

ð4Þ

The above cost functions c(r) involve the differences between the
aligned values, without allowance for the values neighborhoods. This
characteristic can be illustrated by the following example. Let
Si ¼ ð0;1,�3,�2Þ, Sj ¼ ð4;8,5;8Þ, and Sk ¼ ð2,�2,�1,�3Þ be the three
time series given in Fig. 1. Note that Si and Sj are close in behaviors
(i.e., they increase or decrease simultaneously) and far apart in values,
whereas Si and Sk are close in values and opposite in behaviors (i.e., Sk

increases when Si decreases and vice-versa). Both the Euclidean
distance and the dynamic time warping give Si closer to Sk than to
Sj with dEðSi,SkÞ ¼ 4:24odEðSi,SjÞ ¼ 15:13odE ðSj,SkÞ ¼ 16:15, and
dDtwðSi,SkÞ ¼ 6odDtwðSi,SjÞ ¼ 29rdDtwðSj,SkÞ ¼ 29.

3.2. Behavior-based metrics

Let us define two time series S1 and S2 to be similar in behavior
if, during any observed period ½ti,tiþ1�, they increase or decrease
simultaneously with the same growth rate. In contrast, they are
considered to be opposite in behavior if, during any observed
period ½ti,tiþ1� in which S1 increases, S2 decreases and (vice-versa)
with the same growth rate (in absolute value).

Until recently, many applications in different domains (e.g.,
speech recognition, system design control, functional MRI, micro-
arrays and gene expression analysis) have used the Pearson
correlation coefficient as a behavior proximity measure between
signals [16–20]. Let us consider an equivalent formula for the
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Fig. 1. Close on values and far on behavior vs. close on behavior and far on values.
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