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a b s t r a c t

The newly-emerging sparse representation-based classifier (SRC) shows great potential for pattern

classification but lacks theoretical justification. This paper gives an insight into SRC and seeks reasonable

supports for its effectiveness. SRC uses L1-optimizer instead of L0-optimizer on account of computational

convenience and efficiency. We re-examine the role of L1-optimizer and find that for pattern recognition

tasks, L1-optimizer provides more classification meaningful information than L0-optimizer does. L0-optimizer

can achieve sparsity only, whereas L1-optimizer can achieve closeness as well as sparsity. Sparsity determines

a small number of nonzero representation coefficients, while closeness makes the nonzero representation

coefficients concentrate on the training samples with the same class label as the given test sample. Thus, it is

closeness that guarantees the effectiveness of the L1-optimizer based SRC. Based on the closeness prior, we

further propose two kinds of class L1-optimizer classifiers (CL1C), the closeness rule based CL1C (C-CL1C) and

its improved version: the Lasso rule based CL1C (L-CL1C). The proposed classifiers are evaluated on five

databases and the experimental results demonstrate advantages of the proposed classifiers over SRC in

classification performance and computational efficiency for large sample size problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

‘‘Sparse (or sparsity)’’ becomes a popular term in neuroscience,
information theory and signal processing and related areas in the
past decade [1–10]. Vinje and Gallant’s studies suggested that
primary visual cortex (area V1) uses a sparse code to efficiently
represent natural scenes. The receptive fields function forms a
sparse representation of the visual world during natural vision [1].
Olshausen and Field [2] and Serre [3] revealed that the firing
of the neurons with respect to a given input image is typically
highly sparse if these neurons are viewed as an overcomplete
dictionary of base signal elements at each visual stage. All of these
findings form a physiological basis for sparse coding and sparse
representation.

Sparse coding and sparse representation has recently aroused
intensive interest pattern recognition and computer vision area.
Labusch et al. [11] presented a simple sparse-coding strategy for
digit recognition and achieved state-of-the-art results on the MNIST
benchmark. Zhou et al. [12] presented a sparse principal component
analysis (SPCA), which uses the Lasso (elastic net) to produce

modified principal components with sparse loadings and yields
encouraging results for regular multivariate data and gene expres-
sion arrays. Subsequently, different formulations of SPCA and sparse
linear discriminant analysis have been developed [13–15]. Cai et al.
[16] suggested a sparse projection over graph and showed its power
for document classification. Qiao et al. [17] put forward a sparse
preserving projection technique and demonstrated its effectiveness
for face recognition. Actually, Qiao et al.’s sparse preserving projec-
tion can be viewed as a special case of L1-graph under a general
dimensionality reduction framework [18–20]. Recently, Wright
et al. presented a sparse representation based classification method
and successfully applied it to recognize human faces with varying
lighting condition, occlusion and disguise [21]. In addition, Wright
et al. [20] reviewed other sparse representation methods that were
applied to different vision tasks such as image super-resolution [22],
image denoising and inpainting [23], signal and image classification
[24–27], etc. In most of these applications, using sparsity as a prior
leads to state-of-the-art results.

This paper focuses on sparse representation based classification.
The basic idea of Wright et al.’s sparse representation based
classification (SRC) method is to represent a given test sample as a
sparse linear combination of all training samples; the sparse nonzero
representation coefficients are supposed to concentrate on the
training samples with the same class label as the test sample. The
sparsest solution can be sought by solving the L0-optimization
problem. However, solving L0-optimization problem is NP hard
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and even difficult to approximate [28]. Recent development in the
emerging theory of sparse representation and compressed sensing
[29,30,5] reveals that finding the solution of the L0 optimization
problem is equivalent to finding the solution of the L1 optimization
problem for certain dictionaries. The L1-optimizer is therefore used
instead of the L0-optimizer in SRC.

Regarding SRC, a fundamental problem is: when one uses all
classes of training samples to represent a given test sample, why
does the small number of nonzero representation coefficients con-
centrate on the homo-class training samples? Wright and Ma [31]
and Wright et al. [20] addressed the extended L1-minimization
model based error correction problem and interpreted why accurate
recovery of sparse signals is possible even if the corruption error is
almost dense. But the fundamental problem mentioned remains
open, just as said in [20] ‘‘—the striking discriminative power of the
sparse representation still lacks rigorous mathematical justification’’.
In this paper, our intention is to seek some reasonable supports
for SRC.

We begin with an example of the two-class handwritten numer-
ical recognition problem in which the L0-solution fails while the
L1-Solution succeeds for classification. This fact indicates that
the sparest representation gained by the L0-optimizer is not suffi-
cient for classification. Conversely, the L1-optimizer may not achieve
the sparest solution, but achieves the meaningful solution for correct
classification. We then introduce the closeness theory to reveal the
connection of the L1-solution to classification. The L1-norm of
nonzero weights can provide a metric to measure the degree of
closeness between the testing sample and its support training
samples, while the L0-norm cannot. The effectiveness of SRC is due
to the closeness prior: the homo-class representation leads to the
minimal L1-norm of nonzero weights. The physical meaning of
minimizing L1-norm of weights becomes clearer if a weight-sum-
to-one constraint is imposed onto the L1-optimizer, i.e., searching for
the support training samples such that their centroid is closest to
the given test sample in the sense of L1-norm.

We further introduce the theory of (global) neighborliness and
local neighborliness of quotient polytope associated with a diction-
ary, and use it to in-depth analyze the role of L1-optimizer in pattern
recognition. In global neighborliness cases where the quotient
polytope associated with the dictionary formed by all training
samples is t-neighborly, L1-optimizer achieves both sparsity and
closeness globally. In such cases, L1-solution equals to L0-solution,
i.e., the globally sparsest solution. This sparsest solution determines
the set of support training samples that is closest to the given testing
sample. In local neighborliness cases where the quotient polytope
associated with the dictionary formed by class training samples is
t-neighborly, L1-optimizer achieves sparsity locally and closeness
globally. In such cases, L1-solution is a locally sparse solution,
possibly not the globally sparsest solution, but it is the solution
which is most meaningful for classification. Beyond neighborliness,
the degree of sparsity of L1-solution cannot be guaranteed, but
its effectiveness for classification can still be guaranteed, i.e., the
L1-solution determines the set of support training samples that is
closest to the given testing sample.

Based on the closeness analysis, we present two class L1-optimizer
classifiers (CL1C). To this end, we first provide theoretical, geometrical
and computational justifications for supporting the class training
samples based representation. We then present the closeness rule
based CL1C (C-CL1C), which uses the closeness (i.e., the L1-norm of
the representation coefficients) as a criterion to make a decision.
A normalized version of C-CL1C is obtained based on geometrical
meaning of the solution of the constrained L1-optimizer. To overcome
the limitation of C-CL1C, which restricts the testing sample to lie
on faces of the class polytopes and only suits for large sample size
problems, we further present the Lasso rule based CL1C (L-CL1C) and
its normalized version. To test the proposed classifiers, we finally use

four databases which involve different recognition tasks: the AR
database for gender recognition, the CENPARMI database for hand-
written numeral Recognition, the NUST603 database for handwritten
Chinese character recognition, the Extended Yale B database for face
recognition. The experimental results demonstrate the effectiveness
of the proposed classifiers.

2. Outline of sparse representation-based classifier

Suppose there are c known pattern classes. Let Ai be the matrix
formed by the training samples of Class i, i.e., Ai ¼ ½yi1,yi2,. . .,
yiMi
�ARN�M

i, where Mi is the number of training samples of Class
i. Let us define a matrix A¼ ½A1,A2,. . .,Ac�ARN�M , where M¼Pc

i ¼ 1 Mi. The matrix A is obviously composed of entire training
samples.

Given a test sample y, we represent y in a overcomplete
dictionary whose basis vectors are training sample themselves,
i.e., y¼Aw. This system of linear equation is underdetermined if
NoM. The idea of sparse representation based classification is
motivated by the following observation: a valid test sample y can
be sufficiently represented using only the training samples from
the same class. The representation is naturally sparse if training
sample size is large enough. The sparser the recovered represen-
tation coefficient vector w is, the easier it will be to accurately
determine the identity of the test sample y [21].

The sparsest solution to y¼Aw can be sought by solving the
following optimization problem:

ðL0Þ ŵ0 ¼ argmin:w:0, subject to Aw¼ y, ð1Þ

where :U:0 denotes the L0-norm, which counts the number of
nonzero entries in a vector.

Solving L0 optimization problem in Eq. (1), however, is NP hard
and extremely time-consuming. Fortunately, recent research
efforts reveal that for certain dictionaries, if the solution ŵ0 is
spare enough, finding the solution of the L0 optimization problem
is equivalent to finding the solution to the following L1 optimiza-
tion problem [5,29,30]:

ðL1Þ ŵ1 ¼ argmin:w:1, subject to Aw¼ y: ð2Þ

This problem can be solved in polynomial time by standard
linear programming algorithms [33]. A more efficient algorithm,
e.g., the homotopy algorithm which has a computational com-
plexity that is linear to the size of the training set, is available
recently [34].

After obtaining the sparsest solution ŵ1, we can design a
sparse representation based classifier (SRC) in terms of the class
reconstruction residual. Specifically, for Class i, let di : RN-RN be
the characteristic function that selects the coefficients associated
with the ith class. For wARN, di(w) is a vector whose only nonzero
entries are the entries in w that are associated with Class i. Using
only the coefficients associated with the ith class, one can
reconstruct a given test sample y as ŷi ¼ Adiðŵ1Þ. The correspond-
ing class reconstruction residual is defined by

riðyÞ ¼ :y�ŷi:2 ¼ :y�Adiðŵ1Þ:2: ð3Þ

The SRC decision rule is: if rlðyÞ ¼min
i

riðyÞ, y is assigned to
Class l.

For convenience, the training samples (or basis vectors) associated
with nonzero representation coefficients are called the support

training samples (or support basis vectors) in the remainder of the
paper, which is in spirit consistent with the concept of support
vectors in support vector machine (SVM) literature [32].
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