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a b s t r a c t

In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian

Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional

GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy

Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the

generalized GMMs, inspired from the mechanism of Fuzzy C-means (FCMs) which introduces the

degree of fuzziness on the dissimilarity function based on distances. One is named as probability based

FGMMs defining the dissimilarity as the multiplicative inverse of probability density function, and the

other is distance based FGMMs which define the dissimilarity function focusing the degree of fuzziness

only on the distances between points and component centres. Different from FCMs, both of the

proposed dissimilarity functions are based on the exponential function of the distance. The FGMMs are

compared with the conventional GMMs and the generalized GMMs in terms of the fitting degree and

convergence speed. The experimental results show that the proposed FGMMs not only possess the non-

linearity to fit datasets with curve manifolds but also have a much faster convergence process saving

more than half computational cost than GMMs’.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the most statistically mature methods for clustering
[1–5], Gaussian Mixture Models (GMMs) are used intensively in
object tracking [6,7], background subtraction [8,9], feature selec-
tion [10,11], signal analysis [12,13] and learning and modelling
[14–18]. Various kinds of GMMs based methods are developed for
specific applications, such as adapted GMMs [19], which are used
for dealing with undesired effects of variations in speech char-
acteristics, Mahalanobis distance based GMMs [20], which are
capable of splitting one component into two new components,
and Wrapped Gaussian Mixture Models [21] using an expecta-
tion–maximization algorithm suitable for circular vector data to
model dispersion phases. However, more components are
required when fitting the datasets with non-linear manifolds
because of the intrinsic linearity of Gaussian model which leads
to relative large fitting error. To solve this problem and approx-
imate datasets with curve manifolds better, Zhang et al. [22]
proposed active curve axis Gaussian Mixture Models (AcaGMMs)
which are non-linear probability models. PCA and least-squares
fitting methods are used to ‘bend’ AcaGMMs in the principal plane
and points are considered by handling the projection points on
the principal axis.

Fuzzy C-means (FCMs), also known as fuzzy ISODATA, was
developed by Dunn in 1973 [23] and improved by Bezdek in 1981
[24]. It is a popular and effective clustering method which
employs fuzzy partitioning such that a data point can belong to
all groups with different membership grades between 0 and 1.
It employs a weighting exponent m on each fuzzy membership
and distances between points and centres. The effects of the
weighting exponent are discussed that optimal m may result
in better performance or fast convergence in [25,26], and
approaches of determining the weighting exponent have also
been presented in [25,27,28]. The algorithmic frameworks of FCM
and GMMs are closely related [29,30]. Based on FCM, Gustafson
et al. [31] defined fuzzy covariance matrices of clusters which
means that different clusters in the same dataset may have
different geometric shapes. To define these different geometric
shapes of clusters, Tran et al. [32] further made a modification of
GMMs for speaker recognition, which refined the distances in the
FCM functions as the negative of logarithms of density functions.
Therefore, the relationship between the membership and distance
is transferred from exponential relationship to linear relationship,
which however misuses exponential distance parameter to for-
mulate Gaussian density function. Hathaway [33] gave a general
interpretation that the EM algorithm of GMMs is a penalized
version of the hard means clustering algorithm. Ichihashi et al.
[34] proposed a modified version of FCM with regularization by
Kullaback–Leibler (KL) information in the fuzzy objective func-
tion. The relation and comparison between KLFCM and GMMs are
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discussed in [34,35]. As a KLFCM algorithm variant, a generic
methodology for finite mixture model fitting under a fuzzy
clustering principle is proposed and applied to three types of
finite mixture models in [36] to improve their performances.

In order to integrate the advantages of GMMs and FCM in the
mathematical modelling, conventional GMMs are firstly general-
ized in such a way that generalized Gaussian model is equipped
with non-linearity and a better performance, and then Fuzzy
Gaussian Mixture Models (FGMMs) are proposed based on the
generalized GMMs for a much faster convergence process which
makes it more practical. The dissimilarity function in FCM main-
taining the exponential relationship between membership and
distance is refined for FGMMs with a degree of fuzziness in terms
of the membership grades. Therefore, FGMMs not only possess
non-linearity but also have a computationally inexpensive con-
vergence process, which is testified by experiments comparing
FGMMs with conventional GMMs and generalized GMMs in terms
of fitting degree and convergence speed. The FGMMs are different
from the type-2 FGMMs, which uses interval likelihoods to
describe the observation uncertainty [37]. The type-2 FGMM is
focused on the role of footprint of uncertainty in pattern classi-
fication to handle GMMs uncertain mean vector or uncertain
covariance matrix, while the FGMM in this paper focuses on the
precise parameter estimation of GMMs based on the modified
FCM algorithm. The aim of this paper is to improve the conven-
tional GMMs in terms of both performance and efficiency. This
paper is organized as follows: Section 2 introduces generalized
GMMs; Section 3 proposes two types of FGMMs based on the
generalized GMMs; Section 4 provides comparison results of the
proposed FGMMs with conventional GMMs and generalized
GMMs respectively on various kinds of datasets; finally the paper
is concluded with remarks and future work.

2. Generalized GMMs

In this section, we extend the conventional GMMs into a
generalized version which enables the GMMs to have capability
of modelling curve datasets. Following a brief review of conven-
tional GMMs, an EM algorithm is proposed for the generalized
GMMs.

2.1. Conventional GMMs

The probability density function for a Gaussian distribution is
given by the formula:

pðx9yÞ ¼
1

ð2pÞd=2
ffiffiffiffiffiffiffiffi
9S9

q exp �
ðx�mÞTS�1

ðx�mÞ
2

 !
ð1Þ

where the set of parameters has y¼ ðm,SÞ, m is the mean, S is the
covariance matrix of the Gaussian, d is the dimension of vector x,
and exp denotes the exponential function.

Let X ¼ fx1, . . . ,xng be a d-dimensional observed dataset of n

vectors. If the distribution of X can be modelled by a mixture of k

Gaussians, the density of each vector is

pðxt9YÞ ¼
Xk

i ¼ 1

aipiðxt9yiÞ ð2Þ

where the parameters are Y¼ ða1, . . . ,ak,y1, . . . ,ykÞ and ða1, . . . ,akÞ

are the k mixing coefficients of the k mixed components such thatPk
i ¼ 1 ai ¼ 1; each pi is a density function parameterized by yi. The

resulting density for the samples is

pðX9YÞ ¼
Yn

t ¼ 1

pðxt9YÞ ¼LðY9XÞ ð3Þ

The function LðY9X Þ is called the likelihood of the parameters
given the data, or the likelihood function. The likelihood is
considered as a function of the parameters Y where the data X
is fixed. In the maximum likelihood problem, the objective is to
estimate the parameters set Y that maximizes L. That is to find
Yn where

Yn
¼ arg max

Y
LðY9X Þ ð4Þ

Usually, the logðLðY9X ÞÞ is maximized instead because it is
analytically easier. The log-likelihood expression is given by

logðLðY9X ÞÞ ¼ log
Yn

t ¼ 1

pðxt9YÞ

 !
¼
Xn

t ¼ 1

log
Xk

i ¼ 1

aipiðxt9yiÞ

 !
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Directly maximizing the log-likelihood is difficult, hence an
auxiliary objective function Q is taken into account:

Q ¼
Xn

t ¼ 1

Xk

i ¼ 1

witlog½aipiðxt9yiÞ� ð6Þ

where wit is a posteriori probability for individual class i, i¼1,y,k,
and it satisfies

wit ¼
aipiðxt9yiÞPk

s ¼ 1 aspsðxt9ysÞ
ð7Þ

and

Xk

i ¼ 1

wit ¼ 1 ð8Þ

Maximizing Eq. (6) guarantees that pðX9YÞ is maximized if it is
performed by an EM algorithm (e.g., [38,39]). The iteration of an
EM algorithm estimating the new parameters in terms of the old
parameters is given as follows:

� E-step: Compute ‘expected’ classes of all data points for each
class using Eq. (7).
� M-step: Compute maximum likelihood given the data’s class

membership distributions according to the equations

anew
i ¼

1

n

Xn

t ¼ 1

wit ð9Þ

mnew
i ¼

Pn
t ¼ 1 witxtPn

t ¼ 1 wit

ð10Þ

Snew
i ¼

Pn
t ¼ 1 witðxt�mnew

i Þðxt�mnew
i Þ

TPn
t ¼ 1 wit

ð11Þ

When training GMMs, k-means is employed for initialization
before EM starts. The iteration of EM algorithm stops when the
change value of log-likelihood is below a preset threshold.

2.2. Generalized Gaussian models

The conventional Gaussian model has intrinsic linearity as its
axes are all beelines, so more components are needed when
fitting datasets with non-linear manifolds. Active curve axis
Gaussian model (AcaG) has bent principal axis, which makes it
powerful in modelling curve datasets [22].

In this paper, the generalized Gaussian model is defined as the
model including two modalities: one is the conventional Gaussian
model with linear axes and the other is bent Gaussian or
AcaG model with curve principal axis. Let X ¼ fx1, . . . ,xng be a
d-dimensional observed dataset of n vectors. The distribution of X
is based on one Gaussian or bent Gaussian.
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