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a b s t r a c t

Graph-based dimensionality reduction (DR) methods play an increasingly important role in many

machine learning and pattern recognition applications. In this paper, we propose a novel graph-based

learning scheme to conduct Graph Optimization for Dimensionality Reduction with Sparsity Con-

straints (GODRSC). Different from most of graph-based DR methods where graphs are generally

constructed in advance, GODRSC aims to simultaneously seek a graph and a projection matrix

preserving such a graph in one unified framework, resulting in an automatically updated graph.

Moreover, by applying an l1 regularizer, a sparse graph is achieved, which models the ‘‘locality’’

structure of data and contains natural discriminating information. Finally, extensive experiments on

several publicly available UCI and face databases verify the feasibility and effectiveness of the proposed

method.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that dimensionality reduction (DR) has generally
been used as a principled way to understand the high-dimensional
data such as image, text and video sequence. Recently, graph-based
DR methods become more and more popular in pattern recognition
and machine learning fields, due to the fact that graph is a powerful
tool to catch the structure information hidden in objects or data. In
fact, recent research [1] claimed that most existing DR methods can
fall into a graph embedding framework. The representatives have
ISOMAP [2], LLE [3], Laplacian eigenmap [4] and locality preserving
projections (LPP) [5], just to name a few. Under such a framework,
one first constructs a graph from data in terms of some prior
knowledge available, and then based on the constructed graph learns
a projection matrix, which transforms the original high-dimension
data into a lower dimensional space. Among them, graph construc-
tion is crucial since the performances of these algorithms depend
heavily on how well the graph models the original data structure.

As a consequence, the methods for graph construction have
been widely studied in recent years, although building a high-
quality graph is still an open problem [6]. In general, most of the
graph construction processes can be decomposed into two steps.
Firstly, one constructs an adjacency graph by considering the
samples as nodes and linking some of them with edges according
to given rules such as k-nearest neighbors, e-ball neighborhood
and b-matching [4,5,7]. Secondly, a weight is assigned for each
edge. The often-used weight assignment ways include Heat

Kernel [4], Inverse Euclidean Distance [8] and Local Linear
Reconstruction [3], etc. All these graph construction methods
are quite flexible and can in principle be used for any graph-based
learning algorithms including DR, spectral clustering and semi-
supervised learning [1,7,9,10]. However, as pointed out in [10],
there is potential need that graph should be appropriate for the
subsequent learning task.

To establish an ‘‘appropriate’’ graph, Zhang et al. recently
presented an algorithm called Graph-optimized Locality Preser-
ving Projections (GoLPP) [11] for DR task, which optimizes graph
and projections simultaneously in one single objective function.
To the best of our knowledge, this is the first attempt to perform
graph optimization during a specific DR process, rather than
pre-define graph before DR as done in most of graph-based
algorithms [1]. Despite GoLPP obtains empirical superiority to
traditional LPP on some datasets, the graph resulted from GoLPP
usually loses traditional sparsity even though a sparse initial
graph is given in its iterative optimization.

To address this problem, in this paper, we propose a novel
strategy to conduct Graph Optimization for Dimensionality Reduc-
tion with Sparsity Constraints (GODRSC). The proposed method not
only shares the advantages of GoLPP with automatically adjustable
graph, but also has some additional desirable characteristics:

1) The sparsity of graph is held by replacing the entropy regular-
izer in GoLPP with an l1 norm minimization. As pointed out in
[7], sparsification is important to graph since it can bring
higher efficiency, better accuracy and robustness to noise.

2) Interestingly, with adjustable graph, GODRSC essentially pro-
vides an extension to the sparsity preserving projections (SPP)
[12], a recently developed DR algorithm based on sparse
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representation (see Section 2.2 for more details). This establishes
a natural link between GODRSC and SPP, which helps to give an
intuitive explanation why and how the former might work
well [12–14].

3) By solving the trace ratio problem directly, GODRSC avoids the
nonuniqueness of the solutions involved in GoLPP. See Section 3
for more details.

The rest of the paper is organized as follows: Section 2 reviews
three related DR algorithms, GoLPP, SPP and its orthogonalized
extension. Section 3 introduces the GODRSC model and algorithm.
In Section 4, some experimental results are presented. Finally,
conclusions are drawn in Section 5.

2. Related works

2.1. Graph-optimized locality preserving projections (GoLPP)

Given a set of sample points X¼[x1,x2,y,xn], where xiARD,
i¼1.2,y,n, we firstly review the objective function of LPP [5],
which GoLPP is based on

min
W

Pn
i,j ¼ 1 :WT xi�WT xj:

2
Pij

Pn
i ¼ 1 Dii:WT xi:

2

where WARD� d(doD) is the projection matrix, Dii ¼
Pn

j ¼ 1 Pij,
and P¼(Pij)n�n is the edge weight matrix of a neighbor graph,
which has been specified before learning W. In contrast to LPP
with such a pre-defined graph, GoLPP simultaneously completes
graph optimization and projection learning within a unified
objective function [11] below:

min
W ,Sij

Pn
i,j ¼ 1 :WT xi�WT xj:

2
Sij

Pn
i ¼ 1 :WT xi:

2
þZ

Xn

i,j ¼ 1
Sij lnSij

s:t:
Xn

j ¼ 1
Sij ¼ 1,i¼ 1,. . .,n

SijZ0,i,j¼ 1,. . .,n

which can in turn be rewritten as the following trace ratio form

min
W ,Sij

trðWT XLXT WÞ

trðWT XXT WÞ
þZ

Xn

i,j ¼ 1
Sij lnSij

s:t:
Xn

j ¼ 1
Sij ¼ 1,i¼ 1,. . .,n

SijZ0,i,j¼ 1,. . .,n ð1Þ

where S¼(Sij)n�n is an unknown affinity weight matrix of graph, L

is the graph Laplacian;
Pn

i,j ¼ 1 Sij lnSij is an entropy regularization
term with sum-to-one constraint

Pn
j ¼ 1 Sij ¼ 1 and non-negative

constraint SijZ0 for avoiding degenerate solution as well as
endowing Sij with probability meaning; Z is a tradeoff parameter.
According to Zhang et al. [11], the GoLPP model can be solved by
alternating iteration and the iteration process is theoretically
proved convergence. Finally its performance empirically outper-
forms LPP for visualization and classification tasks on a number
of often-used public datasets, benefiting from the automatically
optimized graph.

2.2. Sparsity preserving projections (SPP) and its orthogonalization

SPP [12] is an unsupervised DR algorithm based on graph
construction by sparse representation. In particular, SPP firstly
constructs a graph by representing each sample point xi using as
few sample points in X\{xi} as possible. With different assump-
tions to noise, it can be cast into different l1-minimization

problems such as the following one:

min
Si

:Si:1

s:t::xi�XSi:
2oe

Xn

j ¼ 1
Sij ¼ 1 ð2Þ

where Si is a column vector consisting of the representative
coefficient of sample xi,

1 and minimizing the l1 norm aims to
obtain a sparse solution; :xi�XSi:

2
is the error for reconstructing

xi. Naturally, the jth element Sij in coefficient vector Si can be used
as the affinity weights between samples xi and xj, and thus SPP
builds a graph G¼(X,(Sij)n�n), which describes the sparse recon-
structive relationship among the original samples.

Then, SPP seeks a projection matrix W best preserving the
sparse graph above. Similar to NPE [15], a linear version of LLE [3],
SPP does this by the following objective function:

min
W

Pn
i ¼ 1 :WT ðxi�XSiÞ:

2

Pn
i ¼ 1 :WT xi:

2
ð3Þ

which is equivalent to the trace ratio problem:

max
W

trðWT XSbXT WÞ

trðWT XXT WÞ

whereSb ¼ SþST�SST . Similar to most trace ratio models [1,5,15],
it can be approximately solved by generalized eigenvalue
decomposition.

Furthermore, one can generalize SPP by introducing some
priors or constraints to its model as in many linear DR algorithms
such as LPP. In order to better discuss and validate the proposed
GODRSC method later, here, we give an orthogonalized extension
of SPP, and call it OSPP simply, which can be modeled just by
imposing orthogonal constraint on projection matrix W. With the
same notations as in Eq. (3), the model of OSPP is established by
minimizing the objective defined as follows:

min
W

Pn
i ¼ 1 :WT ðxi�XSiÞ:

2

Pn
i ¼ 1 :WT xi:

2

s:t: WT W ¼ I

Similarly, we have its corresponding trace ratio form

max
W

trðWT XSbXT WÞ

trðWT XXT WÞ

s:t: WT W ¼ I

With the orthogonal constraint, the OSPP model above can be
solved exactly by many recently proposed algorithms [16–18],
rather than approximated by the generalized eigenvalue problem
as original SPP.

3. Graph optimization for dimensionality reduction with
sparsity constraints

3.1. Motivations

Note that, in the GoLPP model (1), the maximum entropy term
makes the edge weights of graph as uniform as possible, conse-
quently incurring the loss of sparsity, which is a basic common
merit in typical graph construction using k-NN and e-ball, or l1
regularization, etc. In fact, the resulted graph updating formula-
tion (see Eq. (11) in Appendix) of GoLPP has shown that there
exist nonzero edge weights in all the pairs of samples. On the

1 It is worthwhile to point out that the ith entry in Si is zero due to removing xi

from sample matrix X.
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