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a b s t r a c t

For face recognition, image features are first extracted and then matched to those features in a gallery set.
The amount of information and the effectiveness of the features used will determine the recognition
performance. In this paper, we propose a novel face recognition approach using information about face
images at higher and lower resolutions so as to enhance the information content of the features that are
extracted and combined at different resolutions. As the features from different resolutions should closely
correlate with each other, we employ the cascaded generalized canonical correlation analysis (GCCA) to
fuse the information to form a single feature vector for face recognition. To improve the performance and
efficiency, we also employ “Gabor-feature hallucination”, which predicts the high-resolution (HR) Gabor
features from the Gabor features of a face image directly by local linear regression. We also extend the
algorithm to low-resolution (LR) face recognition, in which the medium-resolution (MR) and HR Gabor
features of a LR input image are estimated directly. The LR Gabor features and the predicted MR and HR
Gabor features are then fused using GCCA for LR face recognition. Our algorithm can avoid having to
perform the interpolation/super-resolution of face images and having to extract HR Gabor features.
Experimental results show that the proposed methods have a superior recognition rate and are more
efficient than traditional methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, feature-fusion technology [1–13] has become
one of the important technologies for face recognition. The key
idea of feature fusion is to extract various features by different
methods from same patterns, and fuse these multiple features
via some optimization algorithms. We can obtain the effective
discriminant information and reduce the redundant information
between features. This can improve the efficiency and effective-
ness of face recognition to some extent.

Basically, feature-fusion methods can be divided into two
categories. One approach groups multiple feature vectors end
to end to form a union-vector [2], and then extracts features in
the higher-dimensional vector space. This approach dramatically
increases the feature-vector dimension, which results in the small-
sample-size (sss) problem [14], as the within-class dispersion
matrix of the feature vectors easily becomes singular. The other
approach combines two sets of feature vectors to form a combined
vector [3,4], and then extracts features in the complex vector
space. Both feature-fusion methods can improve the recognition
rate. The feature-fusion approach based on union-vectors is referred

as “serial feature fusion”, while the other one, based on complex
vectors, is called “parallel feature fusion” [4]. In general, these two
approaches using simple, serial or parallel feature fusion find it
difficult to effectively express inherent correlations, and to achieve
effective feature fusion.

Some work considering multi-resolution information has been
proposed for face recognition [15–19]. Ekenel and Sankur [15]
proposed a multi-resolution face recognition method which uses
discrete wavelet transform (DWT) to extract the features and
represent the features using subspace analysis methods – inde-
pendent component analysis (ICA) and principal component
analysis (PCA). Different fusion schemes were also compared.
Most of the methods [16–19] perform multi-resolution face
recognition by extracting the Gabor features at different scales
and orientations, which are fused to form multi-resolution fea-
tures. However, our proposed approach is somewhat different
from the conventional multi-resolution methods: our methods
consider the Gabor features at different scales and orientations in
face images at different resolutions. In addition, our methods
employ a Gabor-feature hallucination method [28] to estimate
the higher-resolution Gabor features from the LR Gabor features,
which is more efficient and accurate than performing image super-
resolution (SR) followed by feature extraction. Although Gabor
features can be extracted using Gabor filters at different scales and
orientations, the Gabor features extracted from images at different
resolutions should be more complementary to each other than
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those extracted by Gabor filters with more scales. Theoretically, in
the continuous domain, the same feature can be obtained by
resizing the image or the Gabor filters. However, for a discrete
image, the extracted features will be different, and the errors will
become significant when the image resolution is very low.

Recently, fusion methods [1,20–22] based on canonical correla-
tion analysis (CCA) have been used to extract two different feature
vectors from the same samples, and a correlation criterion func-
tion has been established to compute the canonical correlation
features from the two groups of feature vectors. These fusion
methods form effective, discriminant feature vectors for pattern
recognition. Other related and improved methods [23,24] have
also been proposed. Kettenring [25] proposed the multi-set
canonical correlation analysis (MCCA), which can be used to
analyze linear relationships between more than two sets of
variables. It is a generalized extension of CCA, in essence. Nielsen
[26] described two- and multi-set canonical correlations analysis
(CCA) for data fusion and for multi-source, multi-set, or multi-
temporal exploratory data analysis. MCCA has been successfully
applied to underwater target classification and signal processing
[27]. Although MCCA can solve the multi-set variates problem, it is
difficult to demonstrate the integral relation among the multi-set
variables, and the constraints cannot guarantee that the trans-
formed variables are statistically uncorrelated. This is because
MCCA maximizes the correlation within two sets of data in each
time. Recently, Yuan et al. [6] proposed a multi-set integrated
canonical correlation analysis (MICCA) framework to solve the
multi-set variables. MICCA solves this problem by iterations, which
reduces the efficiency.

In face recognition, the features of images at different scales
can be easily extracted. If we use a simple and effective feature-
fusion method to combine these features, this can improve the
efficiency and performance of face recognition. In this paper, we
propose a novel feature-fusion method for face recognition. This
method combines the multi-resolution Gabor features using
cascaded generalized canonical correlation analyses (CGCCAs).
Furthermore, to extend this method, we employ Gabor-feature
hallucination [28] to estimate higher-resolution Gabor features
from the LR Gabor features. This multi-resolution feature-fusion
(MFF) method can significantly improve the efficiency and perfor-
mance of face recognition, in particular if the face image is of low
resolution.

The organization of this paper is as follows. In Section 2, we
will discuss the use of generalized canonical correlation analysis
(GCCA) to fuse features of different resolutions. In our proposed
algorithm for face recognition, image features from an original
resolution are fused with those features at both a lower and a
higher resolutions in stages. In Section 3, we will first introduce
the prediction of image features at a higher resolution from a low-
resolution image using local linear regression. Then, we apply this
facial-feature hallucination method for low-resolution face recog-
nition. The performances of both our multi-resolution fusion
algorithm for face recognition and our proposed low-resolution
face-recognition algorithm are evaluated and compared to other
existing methods in Section 4. Finally, we conclude our paper in
Section 5.

2. Multi-resolution feature fusion for face recognition

In this section, we describe in detail our MFF method for face
recognition. The Gabor wavelets will first be introduced, followed
by the canonical correlation analysis (CCA), generalized canonical
correlation analysis (GCCA), and generalized canonical projective
vectors (GCPV). Finally, our MFF method for face recognition is
presented.

2.1. Gabor wavelets

Gabor wavelets (GW) [29,30] have been commonly used for
extracting local features for various applications, such as object
detection, recognition, and tracking. Daugman et al. [31,32]
discovered that the simple cells in the visual cortex of mammalian
brains can be modeled using Gabor functions. These kernels are
similar to the response of the two-dimensional receptive field
profiles of the mammalian simple cortical cell and exhibit the
desirable characteristics of capturing salient visual properties such
as spatial localization, orientation selectivity, and spatial frequency
selectivity [33]. In the spatial domain, a GW is a complex
exponential modulated by a Gaussian function, which is defined
as follows [34]:

Ψω;θðx; yÞ ¼
1

2πs2
e�ðx cos θþy sin θÞ2 þð�x sin θþy cos θÞ2=2s2 U ½eiðωx cos θþωy sin θÞ�e�ωs2=2�;

ð1Þ
where (x, y) denote the pixel position in the spatial domain, ω is
the radial center frequency of the complex exponential, θ is the
orientation of the GW, and s is the standard deviation of the
Gaussian function. By selecting different center frequencies and
orientations, we can obtain a family of Gabor kernels from (1),
which can then be used to extract features from an image. GWs
can effectively extract local and discriminating features. In [35–
39], GWs are employed for face recognition, and achieve very high
performance levels.

In Gabor feature representation, only the Gabor magnitudes are
used because the Gabor phases change linearly with small dis-
placements. Five scales and eight orientations of Gabor filters are
usually adopted. The Gabor jet at a pixel position is formed by
concatenating the outputs of the 40 (5�8) filters.

2.2. Basic idea of canonical correlation analysis

Canonical correlation analysis [40,41], developed by Hotelling
et al. in 1936, is a way of measuring the linear relationship
between two multidimensional variables. CCA finds two bases,
one for each variable, that are optimal with respect to correlation
and, at the same time, measures the corresponding correlations. In
other words, it finds the two bases in which the correlation matrix
between the projected variables is diagonal and the correlations
are maximized. The dimensionality of these new bases is equal to
or less than the smaller dimensionality of the two variables.

Suppose A and B are two feature sets defined on a pattern
sample space Ω: For any pattern samples ξAΩ, the corresponding
two feature vectors are xAA and yAB. Considering the two zero-
mean vectors xARp and yARq, CCA finds pairs of directions α and
β that maximize the correlation between the projections xn ¼ αTx
and yn ¼ βTy. In general, the projective directions α and β are
obtained by maximizing the following criterion function:

Jðα; βÞ ¼ αTCxyβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αTCxxαUβ

TCyyβ
q ; ð2Þ

where CxxARp�p and CyyARq�q are the covariance matrices of x
and y, respectively, while CxyARp�q denotes the between-set
covariance matrix of x and y. Furthermore, CT

xy ¼ Cyx:

2.3. Generalized canonical correlation analysis

Generalized canonical correlation analysis [4,20–24] is an
extension of CCA. Let CWx and CWy denote the within-class scatter
matrix of the training samples in A and B, respectively, i.e.

Cwx ¼ ∑
c

i ¼ 1
PðωiÞ ∑

ni

j ¼ 1
ðxij�mx

i Þðxij�mx
i ÞT

" #
; ð3Þ
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