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ABSTRACT

In image analysis, it is often required to reconstruct the boundary of an object in a noisy image. This
paper presents a new method, which relies on flexibility and computational simplicity of B-spline curves,
to reconstruct a smooth connected boundary in a noisy binary image. Boundary inference is based on
oriented distance functions yielding the estimator which is interpreted as a posterior expected boundary
of the underlying random set. The performance of the method and its dependence on the image quality
and model specification are studied on simulated data. The method is applied to reconstruct the skin-air
boundary in digitised analogue mammogram images.
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1. Introduction

Boundary reconstruction in a noisy image is a frequently encoun-
tered problem in image analysis. Examples are abound and include
applications in computer vision, robotics, medical imaging, and
remote sensing. Current work was motivated by boundary recon-
struction in mammography, where the tissue outline is required to
estimate the radiographic density and to calculate the asymmetry
measure of a breast [7,59,50,9,30].

In digital processing, planar images are stored as two- or three-
dimensional arrays with values corresponding to the intensity or the
colour of the pixels, respectively. The goal of boundary reconstruction
is to recover the boundary of an object in a noisy image. Note that the
information loss due to discretisation implies that an object and its
boundary cannot be uniquely identified from the image.

Standard methods for boundary reconstruction include inten-
sity thresholding and edge detectors [10,23]. While readily avail-
able, the methods are sensitive to the contrast-to-noise ratio of an
image, identifying discontinuous boundaries and false edges.
The quality of the reconstruction can be improved by careful
preprocessing of the image and tuning of the parameters.

In the pattern algebra, local boundary patterns are described by
generators and the density of the configuration is specified by
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interactions between pairs of bonds attached to each site [26].
This model is inconsistent on a rectangular lattice with a second-
order neighbourhood structure and rigid interactions, because
certain bond configurations are deterministically excluded, violat-
ing the positivity condition. The limitation, however, can be
resolved on a hexagonal lattice of pixels [56].

In general, boundary models based on local interactions are
sensitive to noise and often result in nonsmooth estimators and
spurious edge patterns. To improve the quality of the reconstruction,
one can consider deformable template models with generators given
by geometrical elements (line segments, arcs, etc.) [27]. Boundary
templates can be further extended to describe the global geometry/
shape of an object [1,28,33]. For a comprehensive review of the
methods and their extensions, we refer to [29,32,11].

In contrast to deformable template models, active contour
models do not model the boundary per se, but rather rely on
parametric or free-form curves for estimation [6,8,18,20,3
7,40,49,53,54]. The modelling curve is attracted to edges by local
image forces, while its smoothness is controlled by user-imposed
regularity constraints. The locality of the gradient forces driving
the curve leads to a strong dependence of the estimator on
initialisation, a CNR of the image and convexity of the shape.
Various extensions were proposed to alleviate these problems and
improve performance [14,18,58,13,60].

Developed by [21], a stochastic model for boundary detection
uses the coarsened image lattice and assigns the boundary and
partitioning labels to blocks of pixels, rather than individual lattice
sites. The distribution of label configurations is based on a disparity
measure between identified pixel blocks and the reconstruction is
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given by the solution of a constrained optimisation problem, where
the constraints specify forbidden label configurations. To preserve
the continuity and avoid spurious patterns, [22] proposed to recover
the boundary by means of a biased random walk. In turn, [44]
models the boundary of a magnetic domain by polygons.

The polygonal model was further extended to polygons with a
varying number of vertices and side lengths [43]. The optimal
number of vertices is determined using a reversible jump Markov
Chain Monte Carlo [24], thus balancing the complexity and the
flexibility of the model. The final estimator of an object is given by
a greyscale image, with intensities corresponding to the posterior
mean state of pixels.

In this paper, we introduce a new method to reconstruct a
smooth connected boundary of an object in a noisy image. As an
example, we consider binary images which arise in molecular
imaging, geology, etc. when, for example, the grey level informa-
tion is limited or the image reflects a presence/absence status of an
object [46]. Note that in this paper, we chose the binary noise
model mainly for its simplicity. The method however generalises
to different types of images. For example, substituting Gaussian
noise for binary channel is straightforward and allows estimation
of the boundary, the noise variance, and intensity values of the
foreground and background without much added complexity.

In this paper, we model the boundary using B-spline curves,
without any shape constraints. The flexibility and computational
simplicity of B-spline curves make them well-suited for contour
modelling [42]. Further, we address the question of posterior
inference for sets and their boundaries and describe appropriate
loss functions. To obtain the boundary estimator, we use an
approach based on oriented distance functions (ODFs), which
allows us to make inference not only about an object, but also
about its boundary. The resulting estimator is interpreted as the
posterior expected boundary. Notably, the loss functions for set
inference are not restricted to planar domains and can be applied
to high-dimensional problems. Similarly, the ODF inference can be
implemented to accommodate hypersurfaces.

This paper is structured as follows. In Section 2, we describe the
statistical model and give a brief overview of B-spline curves.
Section 3 discusses the loss functions and estimators based on
them. The algorithm for sampling from the posterior is given in
Section 4. In Section 5, we study the performance of the method
on a simulated image and explore the sensitivity of the results to
image quality and model parameters. Section 6 gives the results of
boundary reconstruction in a mammogram image. A discussion in
Section 7 concludes the paper.

2. The model
2.1. Notation

Let I be the true (noise-free) image and I° be its observed
degraded version. We assume that both I and [P are binary. Without
loss of generality, we can assume that the foreground is white and
the background is black, describing them as Ir={x:Iy=1} and
Ig = {x : Iy = 0}, respectively; here, subscript x indexes image pixels.
We assume that the boundary of an object extends from the left
edge to the right edge of the image and define the foreground
(background) as the area located below (above) the boundary. Note
that under these assumptions, reconstructing the boundary in I° is
equivalent to reconstructing the true image I.

2.2. Likelihood

We assume that the degradation mechanism of the observed
image I” is described by a binary noise channel; i.e. the colour of a

foreground pixel is reversed with probability ar and preserved
with probability 1—ag, independent of other pixels. Similarly, a
background pixel becomes white with probability ag and remains
black with probability 1—ag, independent of other pixels, so that
ar and ag are the chances of pixel-wise error in the foreground and
background, respectively.

Assume that the true planar boundary is described by some
curve C. The likelihood of the acquired image I°, given the
boundary C and error probabilities ar and ag, is written as

LAP|C, ap, ap) = ap ™ (1—ap)"* apy™ (1—ap)", (1)

where Nge(Ngg) is the number of pixels in Iz that remain white
(become black) in IP, and Ngg(Ngr) is the number of pixels in I3 that
remain black (become white) in I°. Here, we assume that the
boundary is thin and classify a pixel as a foreground (background),
if its centre is below (above) the boundary, so that Ngs + Npg +
Npgg + Ngr is the total number of pixels in the image.

Assuming mutual independence of the boundary and error
probabilities, the Bayes theorem implies that the posterior dis-
tribution of the boundary and noise parameters, given the
observed image, is

2(C, ar, ap|I?)xL(IP|C, ar, ap)p(C)p(ar)p(as),

where p(C), p(ar), p(ag) are the prior distributions for the boundary
C, and the error probabilities ar and ag, respectively. Merely for
later clarity, here we denote the priors by p and posteriors by z.

2.3. Prior distributions

We assume that the boundary of an object is a twice differenti-
able curve and denote by C a planar parametric curve, given by a
mapping C:[0,1]~R?. In general parametrisation, vector
C(t) = (Cy(t), Co(t)) is the position vector along the curve at time ¢t
and (C;(t), Co(t)) are Cartesian coordinates of point C(t) in R?. For a
natural parametrisation C(s) with arc length s as a parameter, let
T(s)=C’(s) be the unit tangent vector of C at point C(s) [38].
The direction of T(s) depends on the orientation of the curve and
points in the direction of increasing parameter values s. For the
curvature vector K(s) = T'(s) = C’(s), the curvature of C at point C(s)
is given by x(s) = |[K(s)|. Thus, x(s) measures the rate of change of
the tangent vector, or the deviation of C from the tangent line in
the neighbourhood of C(s). Correspondingly, the global behaviour
of the curve of length L is captured by its integrated squared
curvature fé x2(s) ds. In the mathematical theory of elasticity, the
integrated squared curvature represents the potential energy
stored in the elastic beam [39].

To control the behaviour of the curve, we define the prior

L
p(C)cxexp{—ﬁ /0 x%(s) dS},

where the deformation constant g > 0 determines the elasticity of
the curve. The curve prior is analogous to the roughness penalty in
nonparametric smoothing and functional regression, where the
penalty has a form of the integrated squared second derivative
with respect to the argument [25,45]. The specified prior assigns
higher probabilities to slowly varying curves, thus favouring them
over erratic contours. The prior is improper because it is invariant
with respect to translations within the image window.
The integrated curvature is also used in active contour models as
a regularisation term that controls the smoothness of the resulting
curve [37].

For computational reasons, we prefer an arbitrary parametrisa-
tion C(t) with parameter t, in which case the squared curvature is
given by

K2(t) = {IC’(O)12IC" (0P —(C(t), C"(£))*}/IC'(0)1°, )
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