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Two-dimensional shape models have been successfully applied to solve many problems in computer
vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned
from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after
applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not
necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the
estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by
sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can
might be insufficient to capture large structural variability of some objects.

To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D
transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D
model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations,
especially when the rotations are parameterized with Euler angles. To address this problem, we
introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference

shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Procrustes analysis (PA) [1-3] is a form of statistical shape
analysis used to analyze the distribution of a set of shapes. Given
two shapes PA “superimposes” both shapes by optimally translat-
ing, rotating and scaling one shape towards the other. If more than
two shapes are registered, the problem is typically known as
generalized Procrustes analysis (GPA). GPA has been typically used
in computer vision as a first step to build 2D models of shape or
appearance of objects. These 2D models have been applied to solve
problems such as object recognition [4,5], facial feature detection
and tracking [6,7] and image segmentation [8,9]. In particular,
Point distribution models (PDMs) and active shape models (ASMs)
[11] are among the most popular techniques to learn 2D objects
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models. PDMs and ASMs build the shape models from a 2D
training set of image landmarks. In PDMs and ASMs, first GPA is
used to remove rigid transformations and, then principal compo-
nent analysis (PCA) is applied to construct a subspace that models
the variation of the normalized shapes [11].

Fig. 1 (left) illustrates the GPA process of building shape models
for PDM or ASM: given a set of 2D views of one or several 3D rigid
or non-rigid objects under several configurations, the shape of the
object is represented by several landmarks that are consistently
labeled across view-points. Observe that if the object is rigid and
the projection is orthographic, all views can be represented using a
three-dimensional subspace [10]. Given the set of shapes (2D
projections across views, objects or non-rigid transformations of
3D objects), GPA aligns the shapes using a rigid transformation
(e.g., Euclidean or affine) to a 2D reference shape such that it
minimizes the least-squares error. Although GPA has been
extensively used, it suffers from three main limitations when
modeling non-rigid transformations of a 3D object or a class of
3D objects: (i) 2D training samples do not necessarily cover a
uniform sampling of all 3D transformations of an object, thereby
biasing the estimate of the 2D models towards some particular
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Fig. 1. Illustration of GPA (left) and CGPA (right) to construct 2D shape models from 3D objects.

configuration; (ii) it is computationally expensive to compute a rich
set of 2D projections from all possible 3D transformations of a set of
objects; and (iii) the large variability of the object class cannot
necessarily be well registered with only one reference shape.

In order to deal with these limitations, we propose continuous
generalized Procrustes analysis (CGPA). CGPA generalizes GPA using a
continuous formulation that avoids the need to generate 2D projec-
tions from 3D configurations and uniformly covers the space of 3D
transformations. Fig. 1 (right) illustrates the main idea behind CGPA,
CGPA integrates over the space of 3D rotations avoiding the need to
compute 2D projections. The continuous approach proposed in this
paper is efficient in space and time, and is not biased to non-uniform
sampling of the input space. A requirement of CGPA is to have access
to a 3D mesh of several configurations of one or more 3D object,
which is a realistic assumption in several computer vision problems.
It is important to notice that building 2D models from 3D samples is a
problem that has been relatively unexplored in computer vision
[1327].

A major challenge of the proposed work is to integrate 3D objects
over the special orthogonal group in 3D: SO(3). While there are many
possible parameterizations of SO(3), we have chosen Euler angles
because it is easy to determine the relation between the rotation limits
and the integration domain (unlike other parameterizations such as
quaternions). However, Euler angles suffer from well-known problems
such the lack of uniform integration over the space of rotations [12] or
the gimbal lock effect. In this paper, to address these problems we use
the Haar measure in the definition of the integral and uniformly
integrate over the space of rotations. In addition, in some cases a
simple mean in the case of GPA is not enough to model the variability
of objects across view-points, and we propose a multi-reference CGPA
by using several reference shapes. Experimental results in several
synthetic and real experiments show the benefits of CGPA over GPA. A
preliminary version of this work was presented in [13].

The rest of the document is organized as follows: Section 2
reviews previous work in GPA and functional data analysis (FDA),
Section 3 gives the mathematical background necessary for CGPA
formulation and Section 4 motivates and derives CGPA. Section 5
reports our experimental results and Section 6 presents the
conclusions and outlines future lines of research. Finally, in
Appendix A we review the GPA fitting algorithm.

2. Previous work
This section reviews previous work within the field of compu-

ter vision on Procrustes analysis and functional data analysis
(FDA).

2.1. Generalized Procrustes analysis (GPA)

Let D=[(DP),....,(DP)"]" be a set of m shape samples that we
wish to align. Note that the super-script ® indicates that the
shapes are 2D. Shape samples are represented as # 2D landmarks
embedded in an R?*” matrix D§2) (see footnote' for notation)

Xit ... Xig
o =(, ).
Yir - Yie
GPA optimizes over the 2D geometric transformation T; (e.g.,
affine, Euclidean) that aligns each sample with respect to the

reference shape, by minimizing the energy of the reference-space
model (see Fig. 2 (right)) [14]

m
ERMM,A)= Y ITD®-MIIZ, 1)
i=1
where Me R?*‘ represents the reference shape, and T; in
T=[T],,T"]" e R?"2 corresponds to the rigid transformation
for the shape sample D§2>_ GPA can also be optimized using the
data-space model (see Fig. 2 (left)) in the following way [14]:

UL 2
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where A; is the inverse transformation of T; and A = [AT, ...,A,Tn]T
e R?™<2 corresponds to the rigid transformation for the reference
shape M.

Recall that the error function of the reference-space model
minimizes the difference between the reference shape and the
registered shape data; in the data-space model, the error function
compares the observed shape points with the transformed refer-
ence shape, i.e., shape points predicted by the model and based on
the notion of average shape [15]. This difference between the two
models leads to different properties. Since the reference-space
cost is a sum of squares and it is linear in the optimization
parameters, it can be optimized via alternated least square
methods. In contrast, the data-space cost is a bilinear problem
and non-convex (in general). If there are no missing data, the data-
space model can be solved using singular value decomposition
(SVD). A major advantage of the data-space model is that it is

! N and R denote the set of natural and real numbers, respectively, and R¢
denotes the set of real vectors of dimension d. We assume that m,d,l,n,p,ie N.
A bold capital letter denotes a matrix, D; a bold lower-case letter a column vector,
d. D; represents the ith block matrix of the matrix D. All non-bold letters denote
scalar variables. ||D||? =Tr(D'D) designates the square of the Frobenius norm of a
matrix. The set operation Q\I" stands for the set difference of € and I'. VF is the
gradient operator with respect to u of the function F.
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