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Mathematical morphology offers popular image processing tools, successfully used for binary and
grayscale images. Recently, its extension to color images has become of interest and several approaches
were proposed. Due to various issues arising from the vectorial nature of the data, none of them imposed
as a generally valid solution. We propose a probabilistic pseudo-morphological approach, by estimating
two pseudo-extrema based on Chebyshev inequality. The framework embeds a parameter which allows
controlling the linear versus non-linear behavior of the probabilistic pseudo-morphological operators.
We compare our approach for grayscale images with the classical morphology and we emphasize the
impact of this parameter on the results. Then, we extend the approach to color images, using principal
component analysis. As validation criteria, we use the estimation of the color fractal dimension, color
textured image segmentation and color texture classification. Furthermore, we compare our proposed

method against two widely used approaches, one morphological and one pseudo-morphological.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical morphology (MM) was founded by Matheron
[1] and Serra [2] and became very popular in non-linear image
processing. Initially, the MM had been introduced as a processing
technique for binary images, which were regarded as sets; there-
fore, its elementary operations are based on the set theory [3].
However, the extension to sets of grayscale images, using the umbra
concept [4,5], introduced a generalization of the basic morphologi-
cal operations which were subsequently used in many image
processing and analysis methods e.g. morphological filtering [6],
watershed segmentation [ 7], etc. The grayscale morphology is based
on the lattice theory, which implies a partial ordering of the data
within the grayscale images. In this case, the lattice structure is not
difficult to obtain, since the grayscale images are real functions and
the set of real numbers implicitly possesses a lattice structure.
However, while the extension from binary to grayscale images is a
natural one, the extension to color or multi-spectral images is not
straightforward, because of the vectorial nature of the data and the
difficulty in finding a suitable ordering for it. Barnett introduced
four types of vector orderings: marginal, reduced, conditional and
partial [8]. When applied to color data, all these orderings have
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certain disadvantages, depending on application. For instance, the
marginal ordering introduces false colors and the conditional
ordering generates visual non-linearities from the human percep-
tion point of view [9]; the reduced and partial orderings are either
relying on pre-orderings, thus lacking the anti-symmetry property,
or behave like conditional orderings, generating perceptual non-
linearities. In fact, the difficulty of extending MM to multivariate
data does not consist in obtaining an ordering, but in obtaining a
pertinent ordering from the human visual system point of view.
There have been proposed a plethora of methods for color and
multivariate MM, but few of them, only recently, referred to this
linearity problem [10,11]. The paper written by Aptoula and Lefévre
in 2007 [12], which includes more than 70 references to different
color MM methods, represents a relatively recent and comprehen-
sive state-of-the-art in this field. Nevertheless, other approaches
have been introduced recently. For instance, in [13] a method using
the color data distribution in a partial ordering based on depth
functions is presented, [14] proposes a graph-based approach using
the Laplacian eigenmaps as a method for non-linear dimensionality
reduction, thus resulting a reduced ordering, while[15] proposes a
geometrical method based on the so-called Loewner order.
Recently, there has also been a great interest in supervised methods
for establishing orderings among vectorial data [16,17].

In addition to the proposed morphological approaches whose
operations respect all the mathematical properties of the classical
MM, there were also proposed pseudo-morphologies, which do
not require an underlying order among the image data, focusing
on computing directly the minimum and maximum of a given set
[18,19]. This kind of approaches do not require a complete lattice
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structure, consequently lacking a binary relation that is reflexive,
anti-symmetric and transitive and thus, they cannot be theoreti-
cally considered morphological. However, they could be of practical
interest in noise reduction, texture classification or multispectral
remote sensing data processing [20,21].

In this paper we propose a probabilistic pseudo-morphology
(PPM) approach based on the Chebyshev inequality, in which we
estimate the two extrema (the infimum and the supremum) of a set
instead of defining an underlying ordering for the entire data set.
PPM is based on the choice of one parameter, which is capable of
turning it either into a linear or non-linear approach (see details in
Section 3). By using the statistical moments (both the mean and
the variance) of the local data distribution, the proposed method is
less influenced by the presence of noise. Then, we propose an
extension to color or multivariate images. This extension has the
advantages that it is full-vectorial and it generates adjustable
operations i.e. linear versus non-linear vector filtering. Despite
the fact that it introduces false colors, it is useful in various
applications like morphological edge detection or texture descrip-
tion based on morphological operations. We demonstrate the
usefulness of our approach in the context of color texture com-
plexity estimation, textured image segmentation and color texture
classification.

The next sections of the paper are organized as follows: Section 2
presents the general concepts and definitions for MM and Cheby-
shev inequality, on which our approach is based; Section 3 defines
the probabilistic pseudo-morphology for grayscale images while
in Section 4 the extension to multivariate images is presented;
the paper is ended with a section of discussions and one of
conclusions.

2. Theoretical notions
2.1. General aspects about MM

In this section we briefly present the general concepts and
definitions of MM's basic operations, using the notations from
[22]. Table 1 presents all the notations we use and propose within
this article.

The erosion and the dilation, the fundamental operations of
MM, are defined within a complete lattice as the operations which
distribute over the infima and the suprema [3]. However, these
definitions are not suitable for a practical implementation. The
more popular definitions, which are often used in implementa-
tions, are based on the concept of structuring element (SE), which is
a relatively small set used for probing the image f, which is
analyzed. An origin is associated with any SE g, within its
definition domain Dg. This origin helps positioning the SE at every
coordinate within the initial image definition domain Dy i.e. at
every pixel coordinate x. In order to avoid mixing the spatial units

Table 1
Notations.
f, Dy Image function and its support
Spf The f function's range of values
S;f The f function's codomain expressed in PCA basis
X = (i,j) Spatial coordinates for the pixel at line i and column j
Cy, Cx Grayscale, color or multivariate coordinates of the x pixel,
expressed in the initial or PCA space
8, Dy Structuring element and its spatial domain of definition
[65()1(X), Dilation and erosion of image f, using the structuring element g,

[eg(N)](x) computed for pixel x

Epgioe A random variable, its mean value and standard deviation
Cq, € Probabilistic pseudo-extrema
R, R The ith pair of global references

of Dy with the pixel values Cy € Spr (Spr C R for grayscale images
or Spr ¢ R" for multivariate images) and because of the fact that
there is no pertinent meaning of adding two multivariate image
data, it is very common to use flat SEs, which are defined only
through their origin and their shape, given by Dg. Using these
notations, the erosion and the dilation of an image f, using a flat SE
g, are defined as follows [23]:

[eg(N(x) = /§7f(X+Z), Vxe Dy M

[5g(f)](x) = \/D f(X*Z), VXe Df )

where A and \/ are the infimum and supremum operators. It can be
noticed that the basic morphological operations involve finding an
infimum and a supremum for the points within a local region,
given by the SE positioning. The extension of these operations to
multivariate images is not straightforward, due to the difficulty of
defining such extrema for vectorial data.

2.2. The Chebyshev inequality

Our approach is based on the Chebyshev inequality (3), which
expresses the upper bound of the probability that any random
variable £ takes values farther from its average value, outside of a
specified interval [24]. The inequality stands for any distribution,
as long as the mean and the standard deviation are finite [25]. Let
£ be a random variable with the mean p; and the standard
deviation ¢¢; the Chebyshev inequality states that

1
P{|§—ps| = kag) < o 3

Using the k parameter, one may generate symmetrical intervals
around the mean value, delimited by bounds which are more or
less closed to the real maximum or minimum values of the
distribution. The bounds of this confidence interval are given by
(4). We define these bounds as the probabilistic pseudo-extrema,
£ and £7, in the sense of the Chebyshev inequality:

E* 4 Het kO'§
= pe—kog

Using an appropriate k value, the probabilistic extrema and the
real maximum and minimum values may be more or less closed to
each other, but only for symmetrical distributions there is a unique
k for which they coincide.

3. A direct application for grayscale images

Our first proposal aims at the direct application of the pre-
viously described notions to grayscale images. Thus, we consider
an image f : Dy —»Sps, with Spr C R. The histogram of any local
neighborhood of the image is an estimate of the probability
density function associated with the pixel data. In this case, the
Chebyshev inequality defines an interval depending on the k
parameter and the standard deviation of the pixel values. The
error between the real maximum and minimum of the local data
set and the estimated pseudo-extrema based on the Chebyshev's
inequality is a function of k. We define the grayscale pseudo-
dilation and pseudo-erosion operations as

lesM0 = A f&x+2)2 ps—koe, VxeD; )
zeDg

BN =V f(x—2) 4 He+kos, VXeDy (6)

zeDyg
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