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a b s t r a c t

This paper studies Fisher linear discriminants (FLDs) based on classification accuracies for imbalanced
datasets. An optimal threshold is found out from a series of empirical formulas developed, which is
related not only to sample sizes but also to distribution regions. A mixed binary–decimal coding system
is suggested to make the very dense datasets sparse and enlarge the class margins on condition that the
neighborhood relationships of samples are nearly preserved. The within-class scatter matrices being or
approximately singular should be moderately reduced in dimensionality but not added with tiny
perturbations. The weight vectors can be further updated by a kind of epoch-limited (three at most)
iterative learning strategy provided that the current training error rates come down accordingly. Putting
the above ideas together, this paper proposes a type of integrated FLDs. The extensive experimental
results over real-world datasets have demonstrated that the integrated FLDs have obvious advantages
over the conventional FLDs in the aspects of learning and generalization performances for the
imbalanced datasets.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Linear classifiers are the basic pattern recognition models,
mainly including classical Fisher linear discriminants (FLDs) [1–5],
single-layer perceptrons (SLPs) [6–8] and linear support vector
machines (SVMs) [9–11]. Because of simple structures and low
computational costs, FLDs are considered as the most popular linear
classifiers in many applications [12–14]. The key of success of FLDs
seems to lie in the fact that the linear decision hyperplanes
obtained usually offer reasonable partitions. However, a major issue
existing in FLDs is that the parameters, namely the mean vectors
and within-class scatter matrices, have to be estimated by limited
available training samples in order to determine the weight vectors
and thresholds [5,15,16]. Though the parameter estimations asso-
ciated with Gaussian distributions reveal some good statistical
properties, the Gaussian assumptions are not able to suit all
distribution cases [17,18].

The criterion function J(.) that maximizes the ratio of between-
class scatters to within-class scatters in order to find the proper
weight vectors is well known and a great creation, and thus called
the Fisher's criterion [15]. Up to date, many criterion functions
have been presented [11,16,17,19]. In a sense, the diverse quadratic
optimization functions used in SVMs are a natural generalization
of the Fisher's criterion [20,21]. As a matter of fact, FLDs are
consistent with SVMs at the aim to maximize the class margins by

constructing the optimal separating hyperplanes or projected
directions [22].

Imbalance is absolute while balance is relative. Currently, more
attention has been paid to imbalanced datasets [23–28], the most
of which is centered on the imbalance of sample sizes for the sake
of intuitiveness and simplicity. A classifier tends to categorize the
present samples to the majority class when learning an imbal-
anced dataset [29]. In other words, it is prone to generate a
classifier that has a strong bias toward the majority class, resulting
in a large number of false negatives.

Re-sampling techniques are popular in solving the imbalanced
problems, i.e., either the minority classes are over-sampled or the
majority classes are under-sampled or some combinations of the
two are employed [25,28,30–32]. In the meantime, boosting and
bagging algorithms have been developed for successively training
component classifiers, named the cost-sensitive classifiers [10,33].
They work by assigning larger weights to the mislabeled samples,
otherwise smaller. Adaboost algorithm, a variation of boosting, is
the popular one [34]. These algorithms can handle the imbalanced
cases, to some extent.

Is an FLD able to solve a linearly separable problem? The
answer is “Yes” for a “balanced” dataset. However, while a two-
class dataset is seriously imbalanced, such an FLD may fail. The
more serious the imbalance is, the poorer the resulting FLD
performs. The imbalance of distribution regions usually has a far
more important influence on the performances of classifiers than
the imbalance of sample sizes does [35]. Therefore, it is relatively
consistent with the actual situations to consider the imbalance of
distribution regions, e.g., variances [5,10,16,18]. Indeed, scatters,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.patcog.2013.07.021

n Corresponding author. Tel.: +86 21 6425 3780; fax: +86 21 6425 2984.
E-mail address: gaodaqi@ecust.edu.cn (G. Daqi)

Pattern Recognition 47 (2014) 789–805

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2013.07.021
http://dx.doi.org/10.1016/j.patcog.2013.07.021
http://dx.doi.org/10.1016/j.patcog.2013.07.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.021&domain=pdf
mailto:gaodaqi@ecust.edu.cn
http://dx.doi.org/10.1016/j.patcog.2013.07.021


manifestations of variances, are already included in J(.). However,
the sum of two within-class scatter matrices is only used as the
denominator of J(.). In other words, J(.) is not related to the
difference of within-class scatters or the imbalance of distribution
regions.

It is the threshold in an FLD that finally determines the location
of a separating hyperplane. Based on the above observations, we
firstly have to answer the question: “Can the classification accu-
racy of an FLD be improved by selecting a proper threshold?”

The weight vector w in an FLD for solving a two-class problem
{ω1, ω2} is only determined by the within-class scatter matrix SW
as well as two mean vectors μ1 and μ2. If SW is or approximately
singular, the FLD will no longer work. In order to address this
issue, SW is often added with a tiny perturbation matrix
[1,12,36,34]. However, it is well known that (A+B)�1a(A�1+B�1).
Therefore, we need to answer the second question: “Is it
feasible for a nearly singular matrix SW to be added with a tiny
perturbation?”

Large attribute elements usually have a larger influence on the
parameters of classifiers than those small do during learning
courses; on the contrary, small class margins usually have a larger
influence on the generalization performances of classifiers than
those large do while making decisions [17,22,35]. The unduly large
elements in a small part of attributes may make SW close to
singular, and the unduly small margins will increase the difficulty
to seek the optimal separating hyperplanes. The above two cases
will make the generalization performances of classifiers designed
become poor. In a sense, feature representation is a crucial step for
designing classifiers, regardless of whether they are linear or non-
linear.

Decimal (DEC) and binary (BIN) codes are two common feature
representation systems. Normalized, proportional, logarithmic and
sigmoid transformations are several popular equal-dimensional
ones. SVMs enlarge the class margins by making the original data
sparse in the higher-dimensional feature spaces through nonlinear
transformations chosen in prior, e.g., polynomial and radial basis
function (RBF) kernels [20,21]. Quoting the thought, we can
transform a data from a lower-dimensional input space to a
higher-dimensional feature space directly by coding in advance.
The premise to do like this is that the original information must be
preserved as much as possible [19]. Therefore, the third question
to be answered is: “How to develop an effective feature represen-
tation system so as to enlarge the class margins as much as
possible, lessen the within-class scatters and ease the unfavorably
large components, on condition that the neighborhood relation-
ships are approximately preserved?”

The solution of weight vectors in FLDs is in essence an analytic
learning process, which is often faster than the iterative ones used
in neural networks and SVMs [15,20]. In spite of an accustomed
practice, the process of one-time analytic solution of weights is not
certainly optimal. Therefore, the fourth question to be answered
is: “How to develop an iterative learning algorithm in order to
alleviate the imbalance and accordingly update the weights and
thresholds by means of properly selecting a portion of the training
samples?”

This paper aims to noticeably improve the classification accura-
cies of FLDs around answering the above-mentioned questions.
In other words, this paper motivates to empirically optimize the
weights and thresholds of FLDs to make the minimum-error-rate
classification on the basis of Bayesian decision theory, from the
heuristic point of view. The rest of this paper is organized as
follows. Section 2 introduces the related work of FLDs. In Section 3,
a series of empirical threshold formulas is proposed to alleviate
the imbalance. Section 4 illustrates some mixed feature represen-
tation approaches and the condition for carrying out feature
extraction by principal component analysis (PCA). Section 5 goes

into details on the epoch-limited iterative learning strategy for
further alleviating the imbalance. Section 6 presents numerous
experimental results. Finally, Section 7 comes to our conclusions.

2. Related work

First of all, let us consider a two-class classification problem
{ω1, ω2} as well as the linear discriminant function. For a pattern
x¼(x1, x2, …, xm)TARm in the m-dimensional input space, the
decision hyperplane π can be written as

π : f ðxÞ ¼wTxþw0 ¼wTx�θ¼ 0 ð1Þ
where w¼(w1, w2, …, wm)TARm is the weight vector, often called
the normal or projected direction of π, and θ¼�w0 is the thresh-
old or bias.

The decision rule is

xAω1; if wTx4θ

xAω2; if wTxoθ

Indefinite; if wTx¼ θ

8><
>: ð2Þ

Suppose the two input data matrices are marked as
X(1)ARN1�m with N1 patterns in class ω1 and X(2)ARN2�m with
N2 in class ω2, respectively, two mean vectors μjARm (j¼1, 2) are
estimated by the training subset X12¼{X(1), X(2)}. The within-class
scatter matrix SWARm�m and the between-class scatter matrix
SBARm�m are defined by

SW ¼ S1 þ S2 ¼ ∑
2

j ¼ 1
∑

xp Aωj

ðxp�μjÞðxp�μjÞT ð3Þ

SB ¼ ðμ1�μ2Þðμ1�μ2ÞT ð4Þ
An FLD seeks the projected direction w by maximizing the

Fisher criterion function J(w)

max
w

JðwÞ ¼ wTSBw
wTSWw

ð5Þ

which is also called the Rayleigh quotient [15,20].
As a matter of fact, the final vector w is only related to SW and

the difference μ1�μ2, and is given by

w¼ S�1
W ðμ1�μ2Þ ð6Þ

If SW is singular, the FLD will be no longer in force; and if
approximately singular, the w obtained will not deserve trust-
worthy. Under these cases, in order to make the FLD work, SW is
often added with a tiny perturbation matrix, either a normal
diagonal diag(ξ1, ξ2, …, ξm)δI or directly a constant δI, where
IARm�m is an identity matrix, δ a regularization parameter
[1,12,34,36,37], and ξi�N(0, 1). The weight vector w thus becomes

w¼ ðSW þ diagðξiÞδIÞ�1ðμ1�μ2Þ ð7Þ
or often directly

w¼ ðSW þ δIÞ�1ðμ1�μ2Þ ð8Þ
Given the expected output for the pth training pattern xp is dp,

the sum of squared errors between the expected and the real
outputs for all the training patterns in {ω1, ω2} is

Eðw; θÞ ¼ ∑
N1þN2

p ¼ 1
ðdp�f ðxpÞÞ2 ¼ ∑

N1þN2

p ¼ 1
ðdp�ðwTxp�θÞÞ2 ð9Þ

Let ∂E(w,θ)/∂θ ¼0, the threshold θ is calculated by

θ¼ 1
N1 þ N2

∑
N1þN2

p ¼ 1
ðwTxp�dpÞ ¼

N1μ
ð1Þ
w þ N2μ

ð2Þ
w

N1 þ N2
� 1
N1 þ N2

∑
N1þN2

p ¼ 1
dp

ð10Þ
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