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In this paper, we propose the regularized discriminant entropy (RDE) which considers both class
information and scatter information on original data. Based on the results of maximizing the RDE, we
develop a supervised feature extraction algorithm called regularized discriminant entropy analysis
(RDEA). RDEA is quite simple and requires no approximation in theoretical derivation. The experiments
with several publicly available data sets show the feasibility and effectiveness of the proposed algorithm
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1. Introduction

Feature extraction from original data is an important step in
pattern recognition, often dictated by practical feasibility. It is also
an essential process in exploratory data analysis, where the goal is
to map input data onto a feature space which reflects the inherent
structure of original data. We are interested in methods that reveal
or enhance the class structure of data, which is an essential
procedure for a given classification problem.

For unsupervised learning's sake, feature extraction is performed
by constructing the most representative features out of original
data. For pattern classification, however, the purpose of feature
extraction is to map original data onto a discriminative feature
space in which samples from different classes are clearly separated.
Many approaches have been proposed for feature extraction, such
as principal component analysis (PCA) [1], linear discriminant
analysis (LDA) [1,2], isometric feature mapping (ISOMAP) [3], local
linear embedding (LLE) [4], locality preserving projection (LPP) [5]
and graph embedding [6].

As feature extraction methods are applied to realistic problems,
where dimensionality is high or the amount of training data is very
large, it is impractical to manually process the data. Therefore, feature
extraction methods that can robustly obtain a low-dimensional sub-
space are of particular interest in practice. Many robust algorithms,
such as robust PCA [7], robust ISOMAP [8,9], robust LLE [10] and robust
LDA [11], have been proposed in the past few years.

Recently, many feature extraction algorithms addressing the
robust classification problem have involved the use of information
theoretic learning (ITL) techniques [12-14]. The maximum likelihood
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principle [15], entropy [16-18], Kullback Leibler (KL) divergence
[19,20], Bhattacharyya distance [21], and Chernoff distance [22] are
often selected to develop feature extraction algorithms. In these
algorithms, however, the handling of robust feature extraction is
achieved at the cost of increased computational complexity. The
projection matrix or the projection procedure of these algorithms is
often solved by iterative optimization which has relatively high
computational complexity. Due to the often used non-convex
constraints, these algorithms are also prone to the local minimum
(or maximum) problem.

In order to preserve computational simplicity and the character-
istics of eigenvalue-based techniques, such as LDA, He et al. [11]
proposed the maximum entropy robust discriminant analysis
(MaxEnt-RDA) algorithm. Renyi's quadratic entropy was used in
MaxEnt-RDA as a class-separability measure. The MaxEnt distribution
was estimated by the nonparametric Parzen window density estima-
tor with a Gaussian kernel. Due to the first-order Taylor expansion of
each Gaussian kernel term, MaxEnt-RDA is an approximate algorithm
which avoids iterative calculation of entropy. MaxEnt-RDA is proposed
for discriminant feature extraction. It can effectively overcome the
limitations of traditional LDA algorithms in a data distribution
assumption and is robust against noisy data [11].

MaxEnt-RDA tried to obtain the projection matrix U by solving
the following constraint MaxEnt problem:

max HU™X) st. HU™X|IC)=c¢;, U'U=I, 1

where

HUTX) = —In <% Ty G(Uij—UTx,-,o)>
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is the esimate of Renyi's entropy by Parzen method, G(UTx,-—
UTxi,0) = (1/+/270) exp(— 1 UTx—U"x;112/262). And HU'X|C) =
pI 1p(Cj)H(UTX|C: Cj), where G is the label of the jth class. The
closed form solution of the constraint MaxEnt problem is hard to
find, because the problem is nonlinear. To solve this problem,
He et al. [11] used the first-order Taylor expansion of each
Gaussian kernel:

G(U™xj—U"x;,0) ~ —G(xj—x;,0) | UTxj—U"x; 12 4-const. )

Substituting Eq. (2) into (1), MaxEnt-RDA is reduced to a
constraint graph embedding problem:

max Tr(U'XLXU) s.t. Tr(U'XL,XU)=c;, U'U=I,
where
L, =D'—W!,
L, =D"—-W"Y,
t ZG(X,'—Xj, (7)

v 622?: 1 }1: 1G(X,‘*Xj, O’)’

w_ N ZG(Xi—Xj, O')
Wi =le- C])p(CUUZZL 127 1Gxi—x;, a)
Dj=3r_,Wj, Dy =" Wy, D' and D" are diagonal matrices.
For more details, refer to [11].

Das and Nenadic [23] proposed a discriminant feature extrac-
tion method based on information discriminant analysis (IDA) [24]
and showed how a feature extraction matrix can be obtained
through eigenvalue decomposition, reminiscent of LDA.

IDA is based on maximization of an information-theoretic
objective function referred to as a y—measure, which enjoys many
properties of mutual information and the Bayes error [24,23]. For a
continuous random variable X € R" and class variable {Cy, C5, ..., Cc},
the simplified form of the x—measure is given by

ua>=%<mu&»—;§ﬁxa)m(&)>,

where S is the total (unconditional) covariance matrix, S; is the
class-conditional covariance matrix. The optimal feature extraction
matrix U is found by the maximization of y(Z), where Z = UTX is the
feature random variable. While both the gradient and the Hessian of
H(Z) (with respect to U) can be found analytically, the maximization
of 4 must be performed numerically.

Das and Nenadic's method was referred to as approximate
information discriminant analysis (AIDA) [23]. Das and Nenadic [23]
showed that their criterion is related to the g—measure in an
approximate way, which made their algorithm simple and computa-
tionally efficient. Assume Q € R™" be a symmetric positive definite
matrix with eigenvalue and eigenvector matrices, A = diag(44, ..., An)
and V, respectively. Let xQ = V diag(In A1, ..., In A,)V". AIDA evaluates
the matrix

[
Sapa =InSr— Y p(CHln S;
ich

in the transformed domain (note that Sy —S,,"/*S;S,,//%, S;i— S,,//?
S,—S‘],l /2 and Sy = >¢_ 1p(Cy)S;). The eigenvectors corresponding to the
largest m eigenvalues of Syps are taken to form the projection matrix
U. For more details, refer to [23].

Motivated by information theoretic learning, we propose the
regularized discriminant entropy (RDE), and then introduce a novel
supervised feature extraction algorithm, called regularized discri-
minant entropy analysis (RDEA), which preserves computational

simplicity and characteristics of eigenvalue-based techniques. Several
interesting perspectives should be addressed:

1. The RDE is simple and easy to understand. It considers both
class information and scatter information on original data.
Section 2 shows that maximization of the RDE has connections
to the mean shift algorithm and the pre-image reconstruction.
However, the RDE is designed for supervised learning and is
based on the within-class entropy and scatter information on
data. The regularization parameter used in the RDE is proposed
for the first time ever and does not appear in the mean shift
algorithm and the pre-image reconstruction.

2. RDEA utilizes the results of the RDE, which has a clear
theoretical foundation. RDEA is reduced to a simple con-
strained optimization problem, which can be obtained by eigen
decomposition. For more details, refer to Section 3. RDEA is a
direct solution without approximation. This is quite different
form MaxEnt-RDA and AIDA. In order to use eigenvalue-based
techniques, both MaxEnt-RDA and AIDA use approximation in
their theoretical derivation.

3. RDEA can be regarded as a framework for supervised feature
extraction. Firstly, we use the most widely used Shannon's
entropy to design the RDE. If other generalized entropies are
used, one may obtain other forms of RDE. Secondly, we put
orthogonal constraints on basis functions to obtain projection
matrix. The RDE and the likelihood values can be preserved
under orthogonal projection (refer to Section 3 for details).
Other constraints can be used here to substitute orthogonal
constraints. The combination of different constraints and the
maximization of the RDE can derive different feature extraction
algorithms.

4. In Section 5, we compare our method with several other
second-order feature extraction techniques using real datasets.
The results show that RDEA compares favorably with other
methods. We conclude that RDEA should be considered as an
alternative to the prevalent feature extraction techniques.

2. Maximum entropy principle and regularized discriminant
entropy

2.1. Maximum entropy principle

Let P=(py,Dp,,...,Py) be a probability distribution for N variates
X1,X2,...,XN, and then there is uncertainty about the outcomes.
Shannon used the measure

N
T(P)=- _;l pilnp; 3

to measure this uncertainty and called it the entropy of the
probability distribution P [25]. It can be regarded as a measure
of equality of p;,p,,....py among themselves. Renyi, Havrda and
Charvat, Kapur, Sharma-Taneja and others proposed other func-
tions [25-27] of py,ps....,py to measure this uncertainty and
called these functions as generalized measures of entropies or
simply generalized entropies, such as Burg's entropy:

5o N
TP)= ¥ Inp, 4

and Kapur's entropy:

T"(P)= g:]p, In p; ';(1 py) In(1—py). (5)



Download English Version:

https://daneshyari.com/en/article/530918

Download Persian Version:

https://daneshyari.com/article/530918

Daneshyari.com


https://daneshyari.com/en/article/530918
https://daneshyari.com/article/530918
https://daneshyari.com

