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a b s t r a c t

A key issue of semi-supervised clustering is how to utilize the limited but informative pairwise
constraints. In this paper, we propose a new graph-based constrained clustering algorithm, named
SCRAWL. It is composed of two random walks with different granularities. In the lower-level random
walk, SCRAWL partitions the vertices (i.e., data points) into constrained and unconstrained ones,
according to whether they are in the pairwise constraints. For every constrained vertex, its influence
range, or the degrees of influence it exerts on the unconstrained vertices, is encapsulated in an
intermediate structure called component. The edge set between each pair of components determines
the affecting scope of the pairwise constraints. In the higher-level random walk, SCRAWL enforces
the pairwise constraints on the components, so that the constraint influence can be propagated to the
unconstrained edges. At last, we combine the cluster membership of all the components to obtain the
cluster assignment for each vertex. The promising experimental results on both synthetic and real-world
data sets demonstrate the effectiveness of our method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Semi-supervised clustering, also called constrained clustering, has
become a hotspot in the current research of machine learning and
data mining communities. Compared with traditional clustering [1],
semi-supervised clustering takes advantage of the additional prior
knowledge, such as cluster seeds or pairwise constraints, to improve
the clustering result and avoid clustering ambiguity.

There are two types of supervision mostly used in semi-
supervised clustering. The first one is cluster seed set [2], very
similar to the labeled data set in semi-supervised classification.
The second type is pairwise constraint set, which specifies the
pairs of data belonging to the same cluster (must-link constraints)
or different clusters (cannot-link constraints) [3]. If we view every
data point as a vertex on graph, then the first category of semi-
supervised clustering is a vertex-constrained learning problem,
while the second category is as an edge-constrained learning
problem. Since the edge constraints can be inferred from the
vertex constraints, but not vice versa, it is more challenging to deal
with the edge-constrained clustering problems than those vertex-
constrained ones.

By far, various methods have been proposed to handle semi-
supervised clustering with pairwise constraints. Generally, they
can be classified into two lines. The first line, namely metric
learning, learns optimized metric(s) to keep the must-linked data

close and the cannot-linked data far away [4–6]. Most of the
existing metric learning algorithms learn linear Mahalanobis
distance metrics [4,5], but Wu et al. [6] develop a novel scheme
to learn nonlinear Bregman distance functions. However, they
have a generally known disadvantage that metric learning
approaches require a large number of pairwise constraints to learn
the correct metrics [7]. Moreover, they heavily rely on the prior
assumption about the metric scope, which is hard to predict in
advance. For instance, Xing et al. [4] assume that all the data
points share a single global metric, while Bilenko et al. [8] assume
that every cluster has an independent local metric.

The second line of semi-supervised clustering algorithms
focuses on adapting the existing clustering (generative) or classi-
fication (discriminative) models to deal with this problem. The
early algorithms adapt the traditional methods like k-means [9],
all-pairs shortest path [10], and Gaussian mixtures models [11] to
find a clustering result that can satisfy all the pairwise constraints
greedily. However, without the mechanism of backtracking, they
may fail to find a satisfying partition even when there exists one.
To tackle the sub-optimality problem, people adopt bio-inspired
metaheuristic methods, such as genetic algorithm [12] and Ant
Colony Optimization [13], which can explore the solution space
more exhaustively and hence have a larger chance to find the
global optimal solution. In recent years, more and more graph-
based methods are incorporated in semi-supervised clustering
algorithms. Lu [14] generalize the MAP Gaussian process classifiers
to express the uncertainty information associated with the pair-
wise constraints in a probabilistic framework. In addition, semi-
supervised clustering based on kernel methods [15], maximum
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margin clustering [7], ensembles [16] and fuzzy c-means [17] have
all been developed along this line.

Along the second line, there is an emerging trend in developing
semi-supervised clustering algorithms based on the spectral
method [18]. Kamvar et al. [19] first modify the pairwise similarity
matrix by setting the must-link similarities as 1 and the cannot-
link similarities as 0, then apply spectral clustering on the
modified similarity matrix. However, the 1/0 modification strategy
seems extreme because the data in the same cluster may not
coincide and the data in different clusters probably share similar
attributes. To overcome the shortcoming, Kulis et al. [20] propose a
reward/penalty strategy, which adds a reward to the must-link
similarities and subtracts a penalty from the cannot-link simila-
rities. The drawback, as Li et al. [21] criticized, is that it may cause
non-positive-semidefinite problem for convergence if the penalty
is larger than the original similarities.

It is soon realized that by only revising the similarities of the
constrained edges, it is hard to utilize the limited but informative
pairwise constraints. A straightforward solution is to expand the
constraint influence to the unconstrained edges, but the key issue
lies in how. Although diverse efforts have been made, including
the formulation of the constrained normalized cut [22], the
alteration of the Laplacian matrix eigenspace [23], and the incor-
poration of the Gaussian process [24], they either cannot deal with
the multi-class semi-supervised clustering problems or fail to
handle the cannot-link constraints. Wang and Davidson [25]
develop an objective function that allows real-valued degree-of-
belief constraints, but it can hardly produce satisfactory result
when the number of pairwise constraints is small. Li et al. [21]
combine the spectral method with global metric learning to adapt
the spectral embedding of the data as consistent with the pairwise
constraints as possible. Nevertheless, a metric is rarely uniform in
the whole domain. In another word, the structure of patterns may
vary between different local neighborhoods. Thus a more appro-
priate way is to spread the pairwise constraints locally and exert
greater influence on the nearby edges than on the faraway edges.

To confine the influence of the pairwise constraints to local
areas, it is a natural choice to replace a global metric with several
local metrics. Bilenko et al. [8] integrate local metric learning with
constrained k means to learn an individual local metric for every
cluster. The disadvantage is that they cannot deal with the data
sets containing two or more local metrics in one cluster. Moreover,
users need to provide much more pairwise constraints to ensure
the correctness of all the local metrics. Besides, Lu and Peng [26]
transform the pairwise constraint propagation into solving a
continuous-time Lyapunov equation, which requires a high com-
putational cost. Although the authors provide an approximation
strategy to obtain a suboptimal solution, it still costs quadratic
time complexity.

In this paper, we propose a novel approach to spreading the
constraint influence to the surrounding unconstrained edges with
sufficient smoothness. To this end, we decompose the constraint
propagation process into three steps. First, we extract the vertices in
the pairwise constraints, called constrained vertices ðedge-vertexÞ.
Second, we determine the influence range of every constrained
vertex by computing the degrees of influence it exerts on the
unconstrained vertices ðvertex-vertexÞ. Third, we derive the
affecting scope of each pairwise constraint, and enforce the pair-
wise constraints on the affected edges. During these three steps,
each pairwise constraint is at first treated as a single constrained
edge, then transformed into the influence range of two constrained
vertices, and at last expanded to a group of affected edges. There-
fore, we call this procedure an “edge-vertex-edge” constraint
utilization strategy.

More specifically, our algorithm named SCRAWL, short for
Semi-supervised Clustering via RAndom WaLk, is composed of two

randomwalks with different granularities. In the lower-level random
walk, SCRAWL partitions the vertex set into the constrained and
unconstrained two vertex subsets. Then it determines the influence
range of every constrained vertex by translating the problem to a
well-studied issue in semi-supervised classification, that is estimat-
ing the probabilities of the unlabeled data belonging to the same
class of a labeled data [27]. For this purpose, a semi-supervised
classification algorithm, label propagation [28], is incorporated in
SCRAWL. We further encapsulate the vertices within the influence
range of every constrained vertex in an intermediate structure called
component. The component membership degree of each vertex
equals to the degree of influence it receives from the constrained
vertex. Since the overall component membership degree of each
vertex is 1, we divide a whole vertex to multiple fractional vertices
[29], e.g., v¼ 1

2 v;
1
3 v;

1
6v

� �
, according to its degrees of different

component membership. In this point of view, a component is the
union of the fractional vertices affected by a distinct constrained
vertex. In the higher-level random walk, SCRAWL derives the
affecting scope of each pairwise constraint, which is the edge set
connecting the components around the two constrained vertices. We
call such an edge between two fractional vertices in different
components, e.g. 〈12 vi;

1
3vj〉ð1=2Þvi A component1 ;ð1=3Þvj Acomponent2 ¼ 1

6〈vi; vj〉,
a fractional edge. Its fraction, determined by the product of the
fractions of the connected vertices (e.g., 1

6 ¼ 1
2 � 13), indicates the

degree of influence that the whole edge ð〈vi; vj〉Þ receives from
the constrained edge. To expand the constraint influence, we enforce
the pairwise constraints on the fractional edges among components,
and group the components into different clusters. Finally, we obtain
the cluster assignment for each vertex by combining the cluster
membership of the fractional vertices distributed in different com-
ponents. The promising experimental results on the synthetic data
sets, UCI database and image segmentations demonstrate the effec-
tiveness of SCRAWL.

There are several aspects of our proposed approach worthwhile
to highlight here:

� SCRAWL can propagate the pairwise constraints to the surrounding
unconstrained edges in proportion to the degrees of influence they
receive from the constrained edges. The greater influence an
unconstrained edge receives from a constrained edge, the more
likely it is to satisfy the same pairwise constraint.

� The existing graph-based semi-supervised clustering algorithms
confine the utilization of the pairwise constraints on edges. In
contrast, SCRAWL develops an “edge-vertex-edge” constraint
utilization strategy, which can expand a single constrained edge,
through its two connected vertices, to a group of affected edges.

� SCRAWL introduces an intermediate structure between the
fine-grained vertex and the coarse-grained cluster, called
“component”. It can effectively uncover the underlying sub-
structures of the clusters.

� SCRAWL establishes a connection between semi-supervised
clustering and semi-supervised classification algorithms. It
provides a new way to develop semi-supervised clustering
algorithms based on the semi-supervised classification algo-
rithms, which can predict the degrees of different class mem-
bership for each unlabeled data.

� SCRAWL can effectively handle the clustering problems with
extremely small or large amount of pairwise constraints.

� For large real-world data sets, the time complexity of SCRAWL
is approximately linear, if given a k NN sparse similarity matrix.

The remainder of this paper is organized as follows. Section 2
introduces the label propagation algorithm incorporated in
SCRAWL. Section 3 describes the algorithm of SCRAWL in detail.
Section 4 discusses the parameters of SCRAWL. Section 5 evaluates
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