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a b s t r a c t

We propose a graph-based data clustering algorithm which is based on exact clustering of a minimum
spanning tree in terms of a minimum isoperimetry criteria. We show that our basic clustering algorithm
runs in Oðn log nÞ and with post-processing in almost Oðn log nÞ (average case) and Oðn2Þ (worst case)
time where n is the size of the data-set. It is also shown that our generalized graph model, which also
allows the use of potentials at vertices, can be used to extract an extra piece of information related to
anomalous data patterns and outliers. In this regard, we propose an algorithm that extracts outliers in
parallel to data clustering. We also provide a comparative performance analysis of our algorithms with
other related ones and we show that they behave quite effectively on hard synthetic data-sets as well as
real-world benchmarks.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. A concise survey of main results

Data clustering, as the unsupervised grouping of similar patterns
into clusters, is a central problem in engineering disciplines and
applied sciences which is also constantly under theoretical and
practical development and verification. In this article we are con-
cerned with graph based data clustering methods which are exten-
sively studied and developed mainly because of their simple
implementation and acceptable efficiency in a number of different
fields such as signal and image processing, computer vision, compu-
tational biology, machine learning and networking to name a few.

The main contribution in this article can be described as a general
graph-based data clustering algorithm which falls into the category of
such algorithms that use a properly defined sparsest cut problem as
the clustering criteria. In this regard, it is instructive to note some
highlights of our approach before we delve into the details in sub-
sequent sections (details of our approach as well as a survey of related
contributions will appear in the second part of this introduction).

It has been already verified that graph-based clustering meth-
ods that operate in terms of non-normalized cuts are not suitable

for general data clustering and behave poorly in comparison to the
normalized versions (e.g. see [1]). Moreover, it is well known that
there is a close relationship between the minimizers of the
normalized cut problem, spectral clustering solutions, mixing rates
of random walks, the minimizers of the K-means cost function,
kernel PCA and low dimensional embedding, while the corre-
sponding decision problems are known to be NP-complete in
general (e.g. see [2–8] and references therein).

In this article, we will provide an efficient clustering algorithm
which is based on a relaxation of the feasible space of solutions from
the set of partitions to the larger set of subpartitions (i.e. mutually
disjoint subsets of the domain). From one point of view, our algorithm
can be considered as a generalization of Grady and Schwartz approach
[9,10] based on isoperimetry problems while we extensively rely on
the results of [3,4]. Also, we believe that this relaxation which is based
on moving from the space of partitions to the space of subpartitions
not only provides a chance of making the problem easier to solve but
also is in coherence with the natural phenomena of having undesir-
able data or outliers. We will use this property to show that our
algorithm can be enhanced to a more advanced procedure which is
capable of presenting a hierarchy of data similarity profile which in
turn can lead to the extraction of outliers.

In this regard, one may comment on some different aspects of
this approach as follows.

Theoretical aspects: From a theoretical point of view, it is proved
in [4] that the normalized cut criteria is not formally well defined
in the sense that it does not admit a variational description
through a real function relaxation of the problem (i.e. it does not
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admit a Federer–Fleming type theorem). However, for k≥2, the well-
defined version, known as the k-isoperimetry problem (defined in [4]),
whose definition is in terms of normalized-flow minimization on
k-subpartitions, actually admits such a relaxation. It should be noted
that although there are some approaches to clustering which are
based on the classical 2-isoperimetry (i.e. Cheeger constant) on
weighted graphs (e.g. see [9]), but as it follows from the results of
[4], in the classical model the difference between the cases of
partitions and subpartitions only is observable when k≥3, and
consequently, our approach is completely different in nature from
iterative 2-partitioning or spectral approximation methods based on
eigenmaps already existing in the literature.

Also, as a bit of a surprise (see Theorem 2), it turns out that a
special version of the k-isoperimetry problem is efficiently solvable
for weighted trees. This fact along with a well-known approach of
finding an approximate graph partitioning through minimum
spanning trees constitute the core of our algorithm.

Practical aspects: There are different practical aspects of the
proposed algorithm that one may comment on. First, the proposed
approximation algorithm run-time is almost linear in terms of the
size of input-data which provides an opportunity to cluster large
data sets. Also, it should be noted that our algorithm for
k-clustering obtains an exact optimal clustering of a suitably
chosen subtree in a global approach and does not apply an
iterative two-partitioning or an approximation through eigen-
maps. This in a way is one of the reasons supporting a better
approximation of our algorithm compared to the other existing
ones. In this regard, we also present a number of experimental
results justifying a better performance of our algorithm in practice
(see Section 3).

Second, we should note that approximation through the iso-
perimetry criteria provides an extra piece of information as a
(possibly nonempty) subset of the domain (since the union of
subpartitions may not be a covering). This piece of information
makes it possible to obtain the almost minimal clustering as well
as to extract deviated data and outliers, at the same time (see
Section 4). In order to handle this extra information, we have
generalized our graph model to the case of a weighted graph with
potential. This generalization of the graph representation model is
another original aspect of our contribution where we rely on
results of [3,4] in this more general setting (see Theorem 2). We
also provide comparative experimental results to analyse the
efficiency of the proposed outlier detection method.

1.2. Background and related contributions

Unsupervised grouping of data based on a predefined similarity
criteria is usually referred to as data clustering in general, where in
some more specific applications one may encounter some other terms
as segmentation in image processing or grouping in data mining. Based
on its importance and applicability, there exists a very vast literature
related to this subject (e.g. see [11–13] for some general background),
however, in this article we are mainly concerned with clustering
algorithms that rely on a representation of data as a simple weighted
graph in which the edge-weights are tuned, using a predefined
similarity measure (e.g. see Section 2, [14] and references therein).

Graph-based data clustering is usually reduced to the graph
partitioning problem on the corresponding weighted graph which
is also well-studied in the literature. To this end, it is instructive to
note that from this point of view and if one considers a weighted
graph as a geometric object, then the partitioning problem can be
linked to a couple of very central and extensively studied problems
in geometry as isoperimetry problem, concentration of measure and
estimation of diffusion rates (e.g. see [4,5] and references therein).

A graph-based clustering or a graph partitioning problem is
usually reduced to an optimization problem where the cost

function is a measure of sparsity or density related to the
corresponding classes of data. From this point of view, it is not a
surprise to see a variety of such measures in the literature,
however, from a more theoretical standpoint such similarity
measures are well-studied and, at least, the most geometrically
important classes of them are characterized (e.g. see [15] for a very
general setting). In this context such measures usually appear as
norms or their normalized versions that should be minimized or
maximized to lead to the expected answer.

What is commonly refereed to as spectral clustering is the case
in which the corresponding normalized norm is expressed as an L2

(i.e. Euclidean) norm and admits a real-function relaxation whose
minimum is actually an eigenvalue of the weight (or a related)
matrix of the graph. This special case along with the important fact
that, the spectral properties (i.e. eigenvalues and eigenfunctions)
of a finite matrix can be effectively (at most in Oðn3Þ time)
computed, provides a very interesting setting for data clustering
in which the corresponding optimization problem can be tackled
with using the well-known tools of linear algebra and operator
theory (e.g. see [16–24] and references therein for a general
background in spectral methods).

Although, applying spectral methods are quite effective and vastly
applied in data clustering, but still the time complexity of the known
algorithms and also the approximation factor of this approach in not
as good as one expects when one is dealing with large data-sets (e.g.
see [25] for a recent algorithm and references therein). On the other
way round, these facts lead one to consider the original normalized
versions of the L1 norm that reduces clustering to the sparsest (or
similar minimal) cut problems or their real-function relaxations as the
corresponding approximations. It is proved in [4] that the most
natural such normalized norms do not admit real-function relaxations
when they are minimized over partitions of their domain. Moreover,
it is shown in the same reference that such normalized norms do
admit real-function relaxations when they are minimized over sub-
partitions of their domain. In this new setting the minimum values,
that correspond to the eigenvalues in the spectral L2 setting, are
usually referred to as isoperimetric constants.

Unfortunately, contrary to the case of L2, decision problems
corresponding to the isoperimetry problems are usually NP-hard
(e.g. see [1,3,6,26]), which shows that computing the exact value of
the isoperimetric constants is not an easy task. There has been a
number of contributions in the literature whose main objectives can
be described as proposing different methods to get around this hard
problem and find an approximation for the corresponding isoperi-
metry problem as a criteria of clustering, and consequently, obtaining
an approximate clustering of the given data.

In this regard, one may at least note two different approaches as
follows. In the one hand, there have been contributions which have
tried to reduce the problem to the more tractable case of trees by first
finding a suitable subtree of the graph and then try to approximately
cluster the tree itself (e.g. see [27–33]). The difference between such
contributions usually falls into the way of choosing the subtree and
the method of their clustering. On the other hand, one may also try to
obtain a global clustering by a mimic of spectral methods through
solving not an eigenfunction problem but a similar problem in L1 (e.g.
see [9,10]). These methods usually follow an iterative 2-partitioning
since there was not much information about approximations for
higher order eigenfunctions or similar solutions in L1 until recently
(e.g. see [6,9,25]).

Our main contribution in this article can be described as a
culmination of above mentioned ideas that strongly rely on some
recent studies of higher order solutions of isoperimetry problems
(see [3,4]), in which we first search for a suitable spanning subtree
and after that we obtain the exact solution of the corresponding
optimization problem for our suitably chosen isoperimetric con-
stant (see Section 2). Also, we will obtain a subset of data given as
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