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a b s t r a c t

Receiver Operating Characteristic (ROC) analysis is one of the most popular tools for the visual
assessment and understanding of classifier performance. In this paper we present a new representation
of regression models in the so-called regression ROC (RROC) space. The basic idea is to represent over-
estimation against under-estimation. The curves are just drawn by adjusting a shift, a constant that is
added (or subtracted) to the predictions, and plays a similar role as a threshold in classification. From
here, we develop the notions of optimal operating condition, convexity, dominance, and explore several
evaluation metrics that can be shown graphically, such as the area over the RROC curve (AOC).
In particular, we show a novel and significant result: the AOC is equivalent to the error variance. We
illustrate the application of RROC curves to resource estimation, namely the estimation of software
project effort.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Receiver Operating Characteristic (ROC) analysis [36,47,4,48,19,35,14,34] is a very popular technique for the graphical analysis of
classification models. ROC analysis is profusely used in many areas [21,37,30,31]: radiology, medicine, statistics, bioinformatics, machine
learning, pattern recognition, etc. Also, some metrics derived from the ROC curve, such as the Area Under the ROC Curve (AUC), are now
key for the evaluation and construction of classifiers [15,38,50,42,32].

In classification, the traditional notion of operating condition is common and well understood. Classifiers may be trained for one cost
proportion and class distribution (both making the operating condition) and then deployed on a different operating condition. ROC space
decomposes the performance of a classifier in a dual way. On the x-axis we show the false positive rate (FPR) and on the y-axis we show
the true positive rate (TPR). ROC curves neatly visualise how the TPR and the FPR change for different (crisp) classifiers or evolve for the
same (soft) classifier (or ranker) for a range of thresholds. The notion of threshold is the fundamental idea to adapt a soft classifier to an
operating condition. ROC analysis is the tool that illustrates how classifiers and threshold choices perform.

The adaptation of ROC analysis for regression has been attempted on many occasions. However, there is no such a thing as the
‘canonical’ adaptation of ROC analysis in regression, since regression and classification are different tasks, and the notion of operating
condition may be completely different. In fact, the mere extension of ROC analysis to more than two classes has always been difficult
because the degrees of freedom grow quadratically with the number of classes (see, e.g., [46,17,44]). Consequently it is even questionable
whether a similar graphical representation of ROC curves in regression (or other tasks [26]) can even be figured out. Notable efforts
towards ROC curves (or graphical tools) for regression are the Regression Error Characteristic (REC) Curves [3], the Regression Error
Characteristic Surfaces (RECS) [51], the notion of utility-based regression [41] and the definition of ranking measures [43]. These
approaches are based on gauging the tolerance, rejection rules or confidence levels. Some of these approaches actually convert the
evaluation of a regression problem into a classification problem (tolerable estimation vs. intolerable estimation). However, none of these
previous approaches started from a notion of ‘operating condition’, related to an asymmetric loss function. Also, the notion of threshold was
not replaced by a similar concept playing its role for adjusting to the operating condition, and the dual positive-negative character in ROC
analysis was blurred.

In this paper we present a graphical representation of regression performance based on a very usual view of operating condition. Many
regression applications have deployment contexts where over-estimations are not equally costly as under-estimations (or vice versa).
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This is called the loss asymmetry. Certainly, loss asymmetry is just one possible kind of operating condition (or one of its constituents), but
it is a very common and important one in many applications.

The ROC space for regression (RROC space) is then defined by placing the total over-estimation on the x-axis and the total under-
estimation on the y-axis. This duality leads to regions and isometrics in the ROC space where over-estimations have less cost than under-
estimations and vice versa. There we can plot different regression models to see the notions of dominance. We also consider the
construction of hybrid regression models by ‘interpolating’ between points in the RROC space. Moreover, the plot leads to curves (called
RROC curves) when we use the notion of shift, which is just a constant that we can add (or subtract) to example predictions in order to
adjust the model to an asymmetric operating condition. This notion is parallel to the notion of threshold in classification. Interestingly,
while we can derive the best shift for a dataset given an existing model (which boils down to finding the shift that makes its average error
equal to zero if the cost is symmetric), there are some effective methods to determine this shift for the deployment data given an
operating condition, as has been recently explored by [1,55]. All this leads to a more meaningful interpretation of what the ROC curves for
regression really mean, and what their areas represent.

The paper is organised as follows. Section 2 introduces some notation, the problem of cost-sensitive evaluation and the use of
asymmetric costs in regression. The RROC space is defined in Section 3, where we represent several regression models as points, derive
the isometrics of the space and develop the notions of hybrid models, dominance and convex hull. Section 4 introduces RROC curves,
which are drawn by ranging a constant additive shift. We define an algorithm for plotting them and determine some of its properties in
terms of segment slopes and convexity. Section 5 analyses the area over the RROC curve (AOC), proving its linear relation to error variance,
and showing that the squared error decomposition can be shown in RROC space. A real example is included in Section 6, which illustrates
how RROC curves are used from training to deployment. Finally, Section 7 closes the paper with an enumeration of issues for future
investigation.

2. Background

In this section we introduce some notation and the basic concepts about cost-sensitive regression and the need of asymmetric loss
functions.

2.1. Notation

Let us consider a multivariate input domain X and a univariate output domain Y⊂R. The domain space D is then X�Y. Examples or
instances are just pairs 〈x; y〉∈D, and datasets are subsets (actually multi-sets) of D. The length of a dataset will usually be denoted by n.
A crisp regression model m is a function m : X-Y. When the regression model is crisp, we just represent the true value by y and the
estimated value by ŷ. Subindices will be used when referring to more than one example in a dataset. Vectors (unidimensional arrays) are
denoted in boldface and its elements with subindices, e.g., v¼ ðv1; v2;…; vnÞ. Operations mixing arrays and scalar values will be allowed,
specially in algorithms, as usual in the matrix arithmetic of many statistical computing languages. For instance, v þ c means that the
constant c is added to all the elements in the vector v. The mean of a vector is denoted by μðvÞ and its standard deviation as sðvÞ—over the
population, i.e., divided by n. Given a dataset with n instances i¼ 1…n, the error vector e is defined such that ei≜ŷi−yi. The value μðe2Þ is
known as the mean squared error (MSE), μðeÞ is known as the mean error (or mean error bias, MEB), μðjejÞ is known as the mean absolute
error (MAE) and sðeÞ2 as the error variance. Occasionally, we will drop the preceding M, especially when referring to total squared error
(SE), total error bias (EB) and total absolute error (AE).

2.2. Cost-sensitive problems and loss functions

In cost-sensitive learning [13], there are several features which describe a context, such as the data distribution, the costs of using some
input variables and the loss of the errors over the output variables [52]. In this paper, we focus on loss functions over the output variable,
which is the kind of costs ROC analysis deals with (typically integrated, along with the class distribution, within the notion of skew). A loss
function is defined as follows:

Definition 1. A loss function is any function ℓ : Y�Y-R which compares elements in the output domain. For convenience, the first
argument will be the estimated value, and the second argument the actual value.

Typical examples of loss functions are the absolute error (ℓA) and the squared error (ℓS), with ℓAðŷ; yÞ≜jŷ−yj and ℓSðŷ; yÞ≜ðŷ−yÞ2. These two
loss functions are symmetric, i.e., for every y and r we have that ℓðyþ r; yÞ ¼ ℓðy−r; yÞ. Two of the most common metrics for evaluating
regression, the mean absolute error (MAE) and the mean squared error (MSE) are derived from these losses.

2.3. Asymmetric costs

Actually, although symmetric loss functions (and derived metrics) are common for the evaluation of regression models, it is rarely the
case that a real problem has a symmetric cost. For instance, the prediction of sales, consumptions, calls, prices, demands, survival times,
positions, reliabilities, etc., rarely has a symmetric loss. For instance, a retailing company may need to predict how many items will be sold
next week for stock (inventory) management purposes, e.g., in order to calculate howmany items must be ordered. Depending on the kind
of product, it is usually not the same to over-estimate (increasing stocking costs) than to under-estimate (an item goes out of stock and it
cannot be sold or sold with delays). In fact, it is also rare to find applications where even an asymmetric cost is invariable. In the above-
mentioned example, depending on the warehouse saturation, the cost (and the asymmetry) may change in a weekly or daily fashion.
Because of this, a specialised model for each fixed given asymmetry is not a practical solution in general. This motivates the adaptation
(or reframing) of models, rather than their re-training for each new asymmetric loss. This variability of the operating condition is at the
core of ROC analysis in classification.
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