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The generalized Viterbi algorithm, a direct extension of the Viterbi algorithm for hidden Markov models
(HMMs), has been used to find the most likely state sequence for hierarchical HMMs. However, the
generalized Viterbi algorithm finds the most likely whole level state sequence rather than the most likely
upper level state sequence. In this paper, we propose a marginalized Viterbi algorithm, which finds the
most likely upper level state sequence by marginalizing lower level state sequences. We show
experimentally that the marginalized Viterbi algorithm is more accurate than the generalized Viterbi
algorithm in terms of upper level state sequence estimation.
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1. Introduction

Hidden Markov models (HMMs) [1], known for their success in
voice recognition, have been widely used to analyze time series
data. Fine et al. [2] proposed hierarchical hidden Markov models
(HHMMs) as a generalization of HMMs with a hierarchical state
space. An HHMM may be represented using a tree structure,
where each state at a non-leaf node, called an internal state, is
itself a dynamical probabilistic model. Therefore, the internal
states of an HHMM emit sequences rather than a single symbol.
An HHMM generates sequences by recursive activation of a
substate of an internal state, until a leaf node state, called a
production state, is reached. Production states are the only states
that actually output symbols through the usual HMM mechanism.
The original inference algorithm for HHMMs is not efficient, taking
O(T?) time where T is the length of the observation sequence.
Murphy et al. [3] devised a dynamic Bayesian network (DBN)
representation for HHMMs, thanks to which a linear time (O(T))
inference algorithm is now available.

HHMMs can naturally represent the multiple time scale struc-
ture of many time series data (for example, voice has three time
scale structures: word sequence, phone sequence, and sub-phone
sequence), and are gaining much attention in the research com-
munity. Some of the applications of HHMMs are hand written
character recognition [2], information extraction from texts [4],
and video analysis [5,6].
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The problem of finding the most likely state sequence from an
observation sequence [1] is important and has many applications.
To find the most likely state sequence for HHMMs, the generalized
Viterbi algorithm (GVA) [2,3], a direct extension of the Viterbi
algorithm for HMMs [7,1], has been used. However, GVA finds the
most likely whole level state sequence, but not the most likely
upper level state sequence.

In this paper, we propose a marginalized Viterbi algorithm
(MVA) to overcome the problem associated with GVA. MVA finds
the most likely upper level state sequence by marginalizing lower
level state sequences. For example, MVA will find the most likely
sequence of “word” states in speech recognition by marginalizing
the irrelevant “phone” and “sub-phone” state sequences, thus
avoiding the problems associated with words having several
pronunciations [8].!

To explain our motivation for marginalizing irrelevant lower
level states, consider the simple two level static hierarchical model
in Fig. 1. The model can be seen as a Gaussian mixture speaker
model for speaker identification [9], where the top level state, q',
stands for a speaker s, and the second level state, g2, stands for a
component c of the Gaussian mixture model:

p(@* =clq' =s)=x} ;
po=xX|q' =5,q* = ) = N(X|p, X)), @

where z320 is the weight of ¢ and satisfies >.z5=1.0, and
N (X[, Z%) is a Gaussian density with mean vector xf and covar-
iance matrix X}. Given an observation o=X, the most likely

! MVA cannot, however, find the most likely word sequence since it does not
marginalize over word segmentation boundaries.
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Fig. 1. Two level static hierarchical model.

estimation for the speaker identification is

§ =argmax p(q' =slo=x), )
S

where p(q' = s|o =Xx) is obtained by
p(@' =slo=%)=¥p(@q" =s.9° =clo=X), 3)
C

that is, by marginalizing q°, an irrelevant second level state.

In this paper, we also propose a fast approximation algorithm
for MVA. We show using experiments that MVA is more accurate
than GVA in terms of upper level state sequence estimation.

MVA was developed in our lab and first introduced in [10] as
a conference proceedings paper with a limited audience. The
main theme of the previous paper is not MVA, but HHCRFs,
discriminative models corresponding to HHMMs. Most of the
results presented in the current paper are new, including the fast
approximation algorithm for MVA and the detailed comparison of
GVA and MVA through experiments.

Our paper is organized as follows. We explain HHMMs in
Section 2. We then explain GVA and MVA in Section 3. In
Section 4, we compare the performances of GVA and MVA through
experiments. We summarize the paper in Section 5.

2. HHMMs

An HHMM may be represented using a tree structure, and
generates sequences by recursive activation of a substate of a non-
leaf node until a leaf node state, called a production state, is
reached. Production states are the only states that actually emit
output symbols. The original inference algorithm for HHMMs is
not efficient, taking O(T>) time. Murphy et al. [3] devised a
dynamic Bayesian network (DBN) representation for HHMMs,
thanks to which a linear time (O(T)) inference algorithm is now
available.

2.1. Overview of HHMMs

An HHMM is represented as a tree structure as shown in Fig. 2.
The circles, trapezoids, and rectangles in the figure stand for
internal states, production states, and end states, respectively. The
arrows connecting the states represent state transitions. A solid line
indicates a horizontal transition to a state within the same level, a
broken line indicates a vertical transition to a child state in the next
level, and a dotted line indicates a forced transition from an end
state, after which control is returned to the calling parent state. The
state at the top of the hierarchy is called the root node. The level for
the root node is 0, and a sequence of state transitions starts at the
root state.

Fig. 2. Example of an HHMM with a three-level hierarchy.

An HHMM generates a sequence of observations as follows.

(Step1) Start: we start from the root node at time t=1.

(Step2) Vertical transition: a transition occurs from the current
state (an internal state) to a child state in the lower level.
If the destination is an internal state, further transitions to
lower level states occur until a production state is reached.

(Step3) Output symbol emission: the production state emits an
output symbol o.. Time t is incremented by 1.

(Step4) Horizontal transition: a transition to a state within the
same level occurs. If the destination is an internal state,
we go back to Step 2, and if the destination is a production
state, we go back to Step 3. If the destination is an end
state, we proceed to Step 5.

(Step5) Forced transition: A forced transition occurs to the upper
level parent state which has initiated the current level
state transitions, and we go back to Step 4.

Fine et al. [2], as well as proposing HHMMs, developed an
algorithm for state estimation on the basis of the inside-outside
algorithm. This algorithm is not efficient, however, and the time for
state estimation and also for the most likely state sequence estima-
tion is O(T?), where T is the length of the observation sequence.

2.2. Representing HHMMs as DBNs

Murphy and Paskin [3] devised a dynamic Bayesian network
(DBN) representation for HHMMs. A Bayesian network (BN) is a
directed acyclic graph representing conditional independence
relationships between random variables, and a DBN is an exten-
sion of a BN to a random process, where the random variables are
dependent on time t. Thanks to the DBN representation, linear
time (O(T)) algorithms for state estimation and the most likely
state sequence estimation have become available.

We show a DBN representation of a three-level HHMM in Fig. 3.
(We assume for simplicity that all production states are in the
bottom level of the hierarchy.) The random variable o, in the figure
stands for the output from a production state at time t (t =1, ..., T).
The output of an HHMM can be either discrete or continuous, but
we consider the case of discrete symbol output in this paper. The
state of the HHMM in level d and at time t is denoted by
q¢ (de(1,...,D}), where d is the hierarchy index: the top level has
d=1, and the bottom level has d=D.

ff is an indicator variable which is equal to 1 if g¢ has
transitioned to its end state, and is O otherwise. The indicator
variables play an important role in representing an HHMM as a
DBN. As we explained in the previous subsection, a transition to an
end state leads to a state transition in the upper level. In other
words, f‘f:l implies a possible state change in level d-1. In
addition, if f¢ =1 then f¢ =1 for all d' > d; hence the number of
indicator variables that equal O denotes the level of the hierarchy
we are currently in.
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