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a b s t r a c t

The total variation-based image denoising model has been generalized and extended in numerous

ways, improving its performance in different contexts. We propose a new penalty function motivated

by the recent progress in the statistical literature on high-dimensional variable selection. Using a

particular instantiation of the majorization-minimization algorithm, the optimization problem can be

efficiently solved and the computational procedure realized is similar to the spatially adaptive total

variation model. Our two-pixel image model shows theoretically that the new penalty function solves

the bias problem inherent in the total variation model. The superior performance of the new penalty

function is demonstrated through several experiments. Our investigation is limited to ‘‘blocky’’ images

which have small total variation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Denoising is probably the most common and most studied
problem in image processing. Approaches developed so far
include many methods arising from the field of engineering,
computer science, statistics and applied mathematics. There are
several popular classes of existing denoising algorithms, from
simple linear neighborhood filtering to mathematically more
involved wavelet methods based on solid statistical foundations
[1–3]. The PDE-based methods first proposed in [4] are unique in
their formulation of images as functions in a suitable function
space. Relatively few comparison studies exist among different
methods, which is quite understandable due to (i) there are a
large number of existing denoising approaches with many
different modifications and extensions; (ii) the success or failure
of different approaches depends largely on the characteristics
exhibited by different types of images, whether cartoon or natural
scene images, grayscale or colored, textured or solid objects. One
exception is the work [5] which compared the standard total
variation (TV) model with wavelet denoising and finds that TV is
inferior for some standard test images. With different fine tunings
and extensions available in both the class of PDE-based and
wavelet-based methods, such as using higher order derivatives or
correlated wavelet coefficients, it is still hard to judge from their
results the relative merits of these two approaches, although it

seems to be the prevailing mindset that the wavelet-based
methods work better for general images.

Denoting the unobserved original noiseless image by u, the
goal of denoising is to recover this original image given an
observed noisy image f¼u+n, where n denotes the noise. In
traditional filtering as well as wavelet-based approaches, we
either think of images as m� l matrices or N¼ml-dimensional
vectors, while the PDE-based method will generally treat images
as bivariate functions defined on the unit square O¼ ½0,1� � ½0,1�.
Introduced in [4], the standard total variation (TV) image
denoising method estimates the original image by solving the
following minimization problem

û ¼ arg min
u

Jf�uJ2
þlTVðuÞ, ð1Þ

where J:J is the L2 norm of the function and TVðuÞ ¼
R
Ojruj is the

total variation norm of u [4]. The regularization parameter l
controls the tradeoff between the fidelity to the observed image
and smoothness of the recovered image. Actually the paper [4]
used the somewhat equivalent formulation of minimizing the
total variation with constraints on the noise level, which is
assumed to be known. But the penalized L2 version stated above is
more convenient when the level of the noise is unknown and we
will adopt this formulation in our study. Both practically and
theoretically, this model is the best understood one among PDE-
based methods as of today, where the images are considered as
belonging to the space of functions of bounded variation (BV)
and the existence and uniqueness of solution is well-established
[6–8]. Discrete version of the TV model is considered in [5],
arguing that all approaches have to go through the discretization
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procedure when implemented anyway. Our point of view is
that using either the continuous or discrete formulation for the
PDE-based methods makes little difference in practice.

Although the standard TV model above might not be compe-
titive for general image denoising tasks, it is believed to be ideal
for blocky images, i.e., images that are nearly piece-wise constant.
From a statistical point of view, this can be simply seen by the fact
that it penalizes the first order partial derivatives (or, in discrete
version, first order differences) and thus shrinks them towards
zero. Such images are interesting for at least two reasons. First,
examples of blocky images abound in real life, such as vehicle
registration plates, traffic signs, postal code on envelopes, etc.
A more complicated example in medical imaging is found in [9].
Second, studying of such relatively simple images can usually lead
to deeper insights into different denoising approaches. [10] noted
the inherent bias in the TV model and proposed the spatially
adaptive total variation (SATV) model that applies less smoothing
near significant edges by utilizing a spatially varying weight
function that is inversely proportional to the magnitude of image
derivatives. SATV is a two-step procedure where the weight
function obtained from the first step using standard TV is then
used to guide smoothing in the second step. The authors showed
that with a modest increase in computation, SATV is superior to
standard TV in restoring piece-wise constant image features.

Curiously, there is an almost parallel development in the
statistical literature in the context of high-dimensional linear
regression with variable selection. As explained in the next
section, these studies focus on the regression problem where
although there exist numerous covariates a priori, most of the
regression coefficients are exactly zero, implying that the
corresponding covariates have no effects on the response variable.
Thus shrinking most regression coefficients to zero is a viable
strategy for efficient estimation. For piece-wise constant images,
with first derivatives in most locations exactly equal to zero,
shrinking them to zero is thus also a reasonable approach. Taking
advantage of this observation, we propose to adapt the smoothly
clipped absolute deviation (SCAD) penalty [11,12] that has
become extremely popular in the statistical community for our
image denoising task. Although in the case of TV model the
correspondence between the functional-analytical approach and
the statistical approach seems to be well-known, and some have
studied in detail the properties of total variation from a statistical
point of view [13,14], these statistical works are only restricted to
the one-dimensional case. Besides, as far as we know, the
parallelism stated above has not been fully utilized and in
particular the SCAD penalty has not been applied to penalize
the first order differences even in the one-dimensional case.
Besides its superior performance in practice, there are several
advantages of SCAD penalty compared to SATV, most notably
getting rid of the extra parameter that a user needs to tune for
SATV in implementation. As mentioned before, we think using
either discrete or continuous formulation formally makes little
difference, but we choose to use the continuous formulation since
it can simplify description and notation significantly. The only
problem is that the objective functional using the SCAD penalty
being nonconvex, existence of solution is not guaranteed. The
theoretically inclined reader might want to think in discrete terms
so that such technical point does not arise. Our computational
experiments show that SCAD is superior to SATV in terms of mean
squared error (MSE). Although MSE is notorious for describing the
visual quality of an image, it is arguably less so for blocky images
where MSE can describe the accuracy of restoration rather
faithfully.

The rest of the paper is organized as follows. In the next
section, we briefly review the TV and the SATV model and point
out the almost trivial connection to Lasso and the adaptive Lasso

developed in the statistical literature so that we hope readers
from both fields can follow the motivation and development of
the current paper. In Section 3, we adapt the SCAD penalty for our
image denoising problem and discuss some properties in detail in
this context. We also developed a majorization-minimization
procedure using first order Taylor expansion so that the
computation involved simply reduces to that similar to the SATV
model, although with a different weight function. In Section 4, we
will briefly review a method called Monte-Carlo SURE [15] for
regularization parameter selection which is used in our study
when required. In Section 5, several computational experiments
are used to show the superiority of the proposed method in
denoising blocky images. In these experiments, we also inten-
tionally emphasize the difficulty encountered with SATV model in
tuning its performance. We conclude the paper with a discussion
in Section 6.

2. Review of the TV and SATV model

The TV model proposed by [4] and presented above in Eq. (1)
has received a great deal of attention in the last decade. In [10],
the authors argued that it is desirable that less smoothing is
carried out where there is more detail in the image. This
motivated the replacement of TV norm by the following more
general weighted TV functional

TVwðuÞ ¼

Z
O

wðx,yÞjruðx,yÞjdx dy: ð2Þ

The weight w should be small in the presence of an edge so that
less smoothing is performed near an edge. [10] used a weight
function inversely proportional to the partial derivatives, with a
parameter e40 added both to avoid dividing by zero and to be
used as a tuning parameter to control the amount of adaptivity.
Thus in their proposal of the spatially adaptive total variation
(SATV) model w¼ 1=ðjuxjþeÞþ1=ðjuyjþeÞ where ux and uy are the
partial derivatives. [10] used a two-step method. In the first
step the standard TV model (1) is used to estimate u based on
which the partial derivatives (first order differences) are com-
puted. Then the derivatives are used in (2) to compute the final
restored image. If e is chosen sufficiently large, SATV basically
reduces to the standard TV. On the other hand, if e is too small,
artificial edges will appear and the algorithm will be numerically
unstable as well. We will see in our simulations that the result is
somewhat sensitive to the choice of e and the appropriate amount
of adaptivity is not universal to all images, which makes it
difficult to choose e in practice, or leads to a sizable increase on
the amount of computation required to say the least.

As we mentioned in the introduction, there is an almost
parallel line of development in the statistical literature that uses
the same idea of SATV in a different context. Consider a linear

regression problem yi ¼ xT
i bþei based on independent and

identically distributed (i.i.d.) data {yi,xi}i¼1
n , where xi¼(xi 1,y,xip)T

are the covariates, b¼ ðb1, . . . ,bpÞ
T are the regression coefficients,

and ei is a zero mean noise. Sometimes one has good reasons to
believe that only a few of the x

iq
’s are related to yi, i.e., many of the

bq’s are exactly zero. In these situations it is desirable to design an

approach that shrinks many regression coefficients to zero
automatically. Lasso [16] does exactly that and IS formulated as
the minimization of the following objective function:

Xn

i ¼ 1

Jyi�xT
i bJ

2
þl

Xp

i ¼ 1

jbij:

It is now well-known that this algorithm encourages many
coefficients to be exactly zero as desired due to the use of L1
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